← Back to rubinobservatory.org

A new method to improve photometric redshift reconstruction Applications to the Large Synoptic Survey Telescope

Gorecki, Alexia et al.
Abate, Alexandra; Ansari, Réza; Barrau, Aurélien; Baumont, Sylvain; Moniez, Marc; Ricol, Jean-Stéphane
Publication Date: 
Wednesday, January 22, 2014
Type: 
Journal Articles
Citable: 
no
Category: 
Astronomy & Astrophysics
Volume: 
561 id.A128
Page #: 
19
Abstract: 
Context. In the next decade, the Large Synoptic Survey Telescope (LSST) will become a major facility for the astronomical community. However, accurately determining the redshifts of the observed galaxies without using spectroscopy is a major challenge. Aims. Reconstruction of the redshifts with high resolution and well-understood uncertainties is mandatory for many science goals, including the study of baryonic acoustic oscillations (BAO). We investigate different approaches to establish the accuracy that can be reached by the LSST six-band photometry. Methods. We construct a realistic mock galaxy catalog, based on the Great Observatories Origins Deep Survey (GOODS) luminosity function, by simulating the expected apparent magnitude distribution for the LSST. To reconstruct the photometric redshifts (photo-z’s), we consider a template-fitting method and a neural network method. The photo-z reconstruction from both of these techniques is tested on real Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) data and also on simulated catalogs. We describe a new method to improve photometric redshift reconstruction that efficiently removes catastrophic outliers via a likelihood ratio statistical test. This test uses the posterior probability functions of the fit parameters and the colors. Results. We show that the photometric redshift accuracy will meet the stringent LSST requirements up to redshift ~2.5 after a selection that is based on the likelihood ratio test or on the apparent magnitude for galaxies with signal-to-noise ratio S/N > 5 in at least 5 bands. The former selection has the advantage of retaining roughly 35% more galaxies for a similar photo-z performance compared to the latter. Photo-z reconstruction using a neural network algorithm is also described. In addition, we utilize the CFHTLS spectro-photometric catalog to outline the possibility of combining the neural network and template-fitting methods. Conclusions. We demonstrate that the photometric redshifts will be accurately estimated with the LSST if a Bayesian prior probability and a calibration sample are used.
Reviewed Under: 
LSST Publication Policy (2015 or earlier)

Financial support for Rubin Observatory comes from the National Science Foundation (NSF) through Cooperative Agreement No. 1258333, the Department of Energy (DOE) Office of Science under Contract No. DE-AC02-76SF00515, and private funding raised by the LSST Corporation. The NSF-funded Rubin Observatory Project Office for construction was established as an operating center under management of the Association of Universities for Research in Astronomy (AURA).  The DOE-funded effort to build the Rubin Observatory LSST Camera (LSSTCam) is managed by the SLAC National Accelerator Laboratory (SLAC).
The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 to promote the progress of science. NSF supports basic research and people to create knowledge that transforms the future.
NSF and DOE will continue to support Rubin Observatory in its Operations phase. They will also provide support for scientific research with LSST data.   




Contact   |   We are Hiring

Admin Login

Back to Top