Opening a Window of Discovery on the Dynamic Universe

The LSST operations simulator

Delgado, Francisco
Abhijit Saha ; Srinivasan Chandrasekharan ; Kem Cook ; Catherine Petry ; Stephen Ridgway
Publication Date: 
Monday, August 4, 2014
Type: 
Conference Papers
Citable: 
no
SPIE Proceedings
Abstract: 
The Operations Simulator for the Large Synoptic Survey Telescope (LSST; http://www.lsst.org) allows the planning of LSST observations that obey explicit science driven observing specifications, patterns, schema, and priorities, while optimizing against the constraints placed by design-specific opto-mechanical system performance of the telescope facility, site specific conditions as well as additional scheduled and unscheduled downtime. It has a detailed model to simulate the external conditions with real weather history data from the site, a fully parameterized kinematic model for the internal conditions of the telescope, camera and dome, and serves as a prototype for an automatic scheduler for the real time survey operations with LSST. The Simulator is a critical tool that has been key since very early in the project, to help validate the design parameters of the observatory against the science requirements and the goals from specific science programs. A simulation run records the characteristics of all observations (e.g., epoch, sky position, seeing, sky brightness) in a MySQL database, which can be queried for any desired purpose. Derivative information digests of the observing history are made with an analysis package called Simulation Survey Tools for Analysis and Reporting (SSTAR). Merit functions and metrics have been designed to examine how suitable a specific simulation run is for several different science applications. Software to efficiently compare the efficacy of different survey strategies for a wide variety of science applications using such a growing set of metrics is under development. A recent restructuring of the code allows us to a) use "look-ahead" strategies that avoid cadence sequences that cannot be completed due to observing constraints; and b) examine alternate optimization strategies, so that the most efficient scheduling algorithm(s) can be identified and used: even few-percent efficiency gains will create substantive scientific opportunity. The enhanced simulator is being used to assess the feasibility of desired observing cadences, study the impact of changing science program priorities and assist with performance margin investigations of the LSST system.

Financial support for LSST comes from the National Science Foundation (NSF) through Cooperative Agreement No. 1258333, the Department of Energy (DOE) Office of Science under Contract No. DE-AC02-76SF00515, and private funding raised by the LSST Corporation. The NSF-funded LSST Project Office for construction was established as an operating center under management of the Association of Universities for Research in Astronomy (AURA).  The DOE-funded effort to build the LSST camera is managed by the SLAC National Accelerator Laboratory (SLAC).
The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 to promote the progress of science. NSF supports basic research and people to create knowledge that transforms the future.   




Contact   |   We are Hiring   |   Business with LSST

Admin Login

Back to Top