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This chapter describes the statistical analysis methods that are used in previous chapters either to
forecast LSST performance or as suggested to analyze LSST data. We start with an introductory
review before moving on to some practical examples.

B.1 Basic Parameter Estimation

Very readable introductions to probabilistic data analysis are given by Sivia (1996), MacKay
(2003) and Jaynes (2003); an introduction to the basics is given in this section. A single piece
of experimental data is often presented in the form x = x0 ± σ0, with x0 being the result of
the measurement and σ0 the estimate of its uncertainty. This is shorthand for something like the
statement “I believe that the quantity I am trying to measure, x, is most likely from my experiments
to be x0, but I could also believe that it was actually less than or greater than this by roughly
σ0.” That is, the relation x = x0 ± σ0 is a compressed version of the probability distribution (or
probability density function, PDF) Pr (x0|x,H), to be read as the probability of getting x0 given
assumptions about x and H. When written as a function of the model parameters, this PDF is
referred to as the likelihood. Since our observed data come in probability distribution form, any
conclusions we draw from them will necessarily be probabilistic in nature as well.

Traditionally there are two interpretations of probability: “Frequentist” and “Bayesian.” For
frequentists, probabilities are just frequencies of occurrence: P = n/N where n denotes the number
of successes and N the total number of trials. Probability is then defined as the limit for the number
of independent trials going to infinity. In the example above if one were to repeat the experiment
an infinite number of times, then x will fall in the range [x0 − σ0, x0 + σ0], say, 68% of the time.
Bayesians instead interpret probability as a degree of belief in a hypothesis – a quantified version
of the original statement above.

In cosmology, statistical analysis tends to be carried out in the Bayesian framework. It is easy to
understand why: cosmic variance makes cosmologists only too aware of the limited information
available to them. Only one realization of the CMB anisotropy and the large scale structure is
accessible to our telescopes, and so while this is not a technical barrier to our happily simulating
large numbers of fictitious universes in order to either compute or interpret our uncertainties, it
is perhaps something of a psychological one, promoting the acceptance of the Bayesian notion of
probability.

Bayesian cosmologists, seeking a steady point for their lever, assume that the observable universe is
just one particular realization of a true underlying stochastic model of the Universe: the cosmolog-
ical parameters of this model can be inferred from this one realization via the rules of probability.
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Only if we could average all possible (unobservable) realizations of the underlying model could we
recover the true values of the parameters with certainty – but since we can only observe one of the
infinite possible realizations of it, we have to settle for probability distributions for the parameters
of the underlying model instead.

This mental approach has the distinct advantage that it keeps cosmologists honest about the
assumptions they are making, not only about the underlying world model, but also every other
aspect of the data set they are attempting to model: systematic errors should, in principle, be
already at the forefront of her mind! The catch is that to interpret probability as a degree of
belief in an hypothesis, Bayesian cosmologists have to assume a probability distribution for the
hypothesis itself. This step can be somewhat arbitrary and thus subjective: this is the age-old
point of friction between frequentists and Bayesians. In this appendix we will use the Bayesian
framework, in keeping with the tradition of cosmology. We will nevertheless try to point out where
the “subjectivity” of being Bayesian is introduced (and where it is not).

After this aside, let us return to practicalities. The precise functional form of the likelihood is
always unknown, and so an assumption must be made about it before any interpretation of the
data can occur. This assumption forms part of a model for the data, which we denote by H,
whilst x is a variable parameter of this model. More often than not, the physical nature of the
object being studied is best understood in terms of some different parameter, θ, rather than x: in
this case the model still allows the datum x0 to be predicted, and describes how its probability
is distributed through Pr (x0|θ,H). If more than one datum is available, and they came from
independent attempted measurements of x, we can write the joint likelihood as

Pr (x0, x1, x2, . . . |θ,H) = Pr (x0|θ,H)Pr (x1|θ,H)Pr (x2|θ,H) . . . , (B.1)

the product rule for combining independent probabilities. This makes clearer the distinction be-
tween the parameter θ and the data (which can be conveniently packaged into the vector d having
components xi). Indeed, a more complicated model for the data would make use of more than
one parameter when predicting the data; these can be described by the parameter vector θ. The
generalization of Equation B.1 to Nd independent data sets, {dj}, is then:

Pr (d|θ,H) =
Nd∏
j=1

Pr (dj |θ,H). (B.2)

Within a given model then, the likelihood Pr (d|θ,H) can be calculated for any values of the model
parameters θ. However, as outlined above, cosmologists want statistical inferences, i.e., we want
to learn more about our model and its parameters from the data, by calculating the posterior
distribution Pr (θ|d,H). This distribution contains all the information about the model supplied
by the data, as well as all the information we had about the model other than that provided by
the data: this can be seen by applying the product rule of conditional probability to give Bayes’
theorem,

Pr (θ|d,H) =
Pr (d|θ,H) Pr (θ|H)

Pr (d|H)
. (B.3)

The prior Pr (θ|H) encodes the additional information (this is where the subjectivity of the
Bayesian approach comes in), and is a PDF normalized over the parameter space. The likeli-
hood is also a frequentist quantity (without dependence on the prior) while the posterior is a
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Bayesian construct. In practical applications of Bayesian parameter inference it is good practice
therefore to check how much the reported result depend on the choice of prior: reliable results de-
pend very weakly on the prior chosen. This is in fact a form of model comparison: for Bayesians,
a complete data model consists of a parameter set and the prior PDF for those parameters: some
priors are more appropriate than others. We discuss quantitative model comparison below: in this
context it provides a way of recovering some objectivity in Bayesian analysis.

B.2 Assigning and Interpreting PDFs

As Equation B.3 shows, computing the probability distribution for a parameter (and hence mea-
suring it) necessarily involves the assignment of a prior PDF for that parameter. There are two
types of prior we can assign:

• Uninformative priors, such as uniform distributions in the parameter or its logarithm
(the Jeffreys prior) are often assumed. Sometimes we genuinely know very little, and so
minimizing the average information content of a prior PDF (or maximizing its entropy) makes
sense. In other situations we do know something about a model parameter, but choose to
assign an uninformative prior in order to investigate cleanly the information content of the
data. Sometimes the reason given is to “give an unbiased result.” This makes less sense,
given that Bayesian inferences are biased by design – biased towards what is already known
about the system.

• Informative priors: it is very rare to know nothing about a model and its parameters. An
experiment has usually been carried out before, with different data! The best kind of prior
PDF is the posterior PDF of a previous experiment – this is exactly equivalent to combining
data sets in a joint analysis (Equation B.2 above).

Given suitably assigned priors and likelihoods then, the posterior distribution gives the probability
of the parameter vector lying between θ and (θ + dθ). This is the answer to the problem, the
complete inference within the framework of the model. However, we typically need to present some
compressed version of the posterior PDF: what should we do?

The probability distribution for a single parameter θN is given by marginalization over the other
parameters,

Pr (θN |d,H) =
∫

Pr (θ|d,H) dN−1θ. (B.4)

This is the addition rule for probabilities, extended to the continuous variable case1. This sin-
gle parameter, one-dimensional marginalized posterior is most useful when the parameter is the
only one of interest. In other cases we need to represent the posterior PDF and the parameter
constraints that it describes in higher dimensions – although beyond two dimensions the posterior
PDF becomes very difficult to plot.

The one-dimensional marginalized posterior PDFs can be further compressed into their means,
or medians, or confidence intervals containing some fraction of the total probability – confidence

1Sometimes Equation B.4 is used with the posterior Pr (θ|d, H) substituted by the likelihood. Even in this case a
Bayesian step has been taken: a uniform prior is “hidden” in the parameter space “measure” dN−1θ.
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intervals need to be defined carefully as the integrals can be performed a number of different ways.
However, note that the set of one-dimensional marginalized posterior means (or medians, etc.)
need not itself represent a model that is a good fit to the data. The “best-fit” point is the position
in parameter space where the likelihood function has a global maximum. This point is of most
interest when the prior PDF is uninformative: in the case of uniform prior PDFs on all parameters,
the peak of the likelihood coincides with the peak of the posterior PDF, but in general it does
not. Moreover, the maximum likelihood model is necessarily the model most affected by the noise
in the data – if any model “over-fits” the data, it is that one! Graphical displays of marginalized
posterior PDFs remain the most complete way to present inferences; propagating the full posterior
PDF provides the most robust estimates of individual parameters.

One class of parameters that are invariably marginalized over in the final analysis are the so-called
nuisance parameters. The model H is a model for the data, not just the physical system of interest:
often there are aspects of the experimental setup that are poorly understood, and so best included
in the model as functions with free parameters with estimated prior PDFs. This procedure allows
the uncertainty to be propagated into the posterior PDF for the interesting parameters. Examples
of nuisance parameters might include: calibration factors, unknown noise or background levels,
point spread function widths, window function shapes, supernova dust extinctions, weak lensing
mean source redshifts, and so on. If a systematic error in an experiment is identified, parametrized
and then that nuisance parameter marginalized over, then it can be said to have been translated
into a statistical error (seen as a posterior PDF width): a not unreasonable goal is to translate all
systematic errors into statistical ones.

B.3 Model Selection

While the goal of parameter estimation is to determine the posterior PDF for a model’s parame-
ters, perhaps characterized simply by the most probable or best-fit values and their errors, model
selection seeks to distinguish between different models, which in general will have different sets of
parameters. Simplest is the case of nested models, where the more complicated model has addi-
tional parameters, in addition to those in the simpler model. The simpler model may be interpreted
as a particular case for the more complex model, where the additional parameters are kept fixed
at some fiducial values. The additional parameters may be an indication of new physics, thus
the question one may ask is: “would the experiment provide data with enough statistical power
to require additional parameters and therefore to signal the presence of new physics if the new
physics is actually the true underlying model?” Examples of this type of question are: “do the
observations require a modification to general relativity as well as a universe dominated by dark
energy?”(§ 15.3), or, “do the observations require a new species of neutrino?” (§ 15.2). However,
completely disparate models, with entirely different parameter sets can also be compared using
the Evidence ratio. In this case, in is even more important to assign realistic and meaningful prior
PDFs to all parameters.

These questions may be answered in a Bayesian context by considering the Bayesian Evidence
ratio, or Bayes factor, B:

B =
Pr (d|H1)
Pr (d|H2)

, (B.5)
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where H1 and H2 represent the two models being compared. The Bayes factor is related to the
perhaps more desirable posterior ratio

Pr (H1|d)
Pr (H2|d)

=
Pr (d|H1)
Pr (d|H2)

Pr (H1)
Pr (H2)

. (B.6)

by the ratio of model prior probabilities. The latter is not, in general straightforward to assign
with differences of opinion between analysts common. However, the Bayes factor itself can be
calculated objectively once H1 and H2 have been defined, and so is the more useful quantity to
present.

If there is no reason to prefer one hypothesis over another other than that provided by the data,
the ratio of the probabilities of each of the two models being true is just given by the ratio of
evidences. Another way of interpreting a value of B greater than unity is as follows: if models
H1 and H2 are still to be presented as equally probable after the experiment has been performed,
then proponents of the lower-evidence model H2 must be willing to offer odds of B to one against
H1. In practice, the Bayesian Evidence ratio can be used simply to say that “the probability of
getting the data would be B times higher if model H2 were true than if H2 were.” Indeed, Jeffreys
(1961) proposed that 1 < lnB < 2.5 be considered as “substantial” evidence in favor of a model,
2.5 < lnB < 5 as “strong,” and lnB > 5 as “decisive.” Other authors have introduced different
terminology (e.g., Trotta 2007a).

The evidence Pr (d|H) is the normalization of the posterior PDF for the parameters, and so is
given by integrating the product of the likelihood and the prior over all N parameters:

Pr (d|H) =
∫

Pr (d|θ,H) Pr (θ|H) dNθ. (B.7)

There is ample literature on applications of Bayesian Evidence ratios in cosmology (e.g. Jaffe 1996;
Hobson et al. 2002; Saini et al. 2004; Liddle et al. 2006; Marshall et al. 2006; Parkinson et al. 2006;
Mukherjee et al. 2006a; Pahud et al. 2006; Szyd lowski & God lowski 2006b,a; Trotta 2007b; Pahud
et al. 2007). The evidence calculation typically involves computationally expensive integration
Skilling (2004); Trotta (2007a); Beltrán et al. (2005); Mukherjee et al. (2006a,b); Parkinson et al.
(2006); however, it can often be approximated just as the model parameter posterior PDF can. For
example, Heavens et al. (2007) shows how, by making simplifying assumptions in the same spirit
of Fisher’s analysis (Fisher 1935), one can compute the expected evidence for a given experiment,
in advance of taking any data, and forecast the extent to which an experiment may be able to
distinguish between different models. We implement this in § 15.2 and § 15.3. In § 15.2 we consider
the issue of deviations from the standard number of three neutrino species. The simplest model
has three neutrino species, but effectively this number can be changed by the existence of a light
particle that does not couple to electrons, ions or photons, or by the decay of dark matter particles,
or indeed any additional relativistic particle. Given the observables and errors achievable from a
survey with given specifications, we use the evidence in order to address the issue of how much
different from the standard value the number of neutrino species should be such that the alternative
model should be favored over the reference model.

In § 15.3 we also employ the Bayesian evidence: this time the reference model is a cold dark matter
+ dark energy model, where gravity is described by General Relativity (GR). In the alternative
model, GR is modified so that the growth of cosmological structure is different. Again, given the
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observables and errors achievable from a survey with given specifications, we use the evidence to
quantify how different from the GR prediction the growth of structure would have to be such that
the alternative model should be preferred.

B.4 PDF Characterization

The conceptually most straightforward way to carry out parameter inference (and model selec-
tion) is to tabulate the posterior PDF Pr (θ|d,H) on a suitable grid, and normalize it via simple
numerical integration. This approach is unlikely to be practical unless the number of parame-
ters is very small and the PDF is very smooth. The number of function evaluations required
increases exponentially with the dimensionality of the parameter space; moreover, the following
marginalization integrals will all be correspondingly time-consuming. In this section we consider
two more convenient ways to characterize the posterior PDF — the multivariate Gaussian (or
Laplace) approximation, and Markov Chain Monte Carlo sampling.

B.4.1 The Laplace Approximation

By the central limit theorem, the product of a set of convex functions tends to the Gaussian
functional form in the limit of large set size (Jaynes 2003); the posterior probability distribution
of Equation B.3 often fits this bill, suggesting that the Gaussian distribution is likely to be a good
approximation to the posterior density. Approximating probability distributions with Gaussians
is often referred to as the Laplace approximation (see e.g. Sivia 1996; MacKay 2003).

In one dimension, a suitable Gaussian can be found by Taylor expansion about the peak position
θ0 of the logarithm of the posterior PDF P (θ) (where the conditioning on the data and the model
have been dropped for clarity):

logP (θ) ≈ logP (θ0) +
1
2

(θ − θ0)2
d2P

dθ2

∣∣∣∣
θ0

. (B.8)

Exponentiating this expression gives the Gaussian approximation to the function,

g(θ) ≈ P (θ0) exp
[
−(θ − θ0)2

2σ2

]
. (B.9)

The width σ of this Gaussian satisfies the following relation:

d2 logP
dθ2

∣∣∣∣
θ0

= − 1
σ2
. (B.10)

The extension of this procedure to multivariate distributions is straightforward: instead of a single
variance σ2, an N ×N covariance matrix C is required, such that the posterior approximation is

g(θ) = P (θ0) exp
[
−1

2
(θ − θ0)TC−1(θ − θ0)

]
, (B.11)
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and the covariance matrix has components

(
C−1

)
ij

= −∂
2 logP
∂θi∂θj

∣∣∣∣
θ0

. (B.12)

(This matrix is very unlikely to be diagonal – correlations, or degeneracies, between parameters
are encoded in its off-diagonal elements.) The problem is now reduced to finding (numerically)
the peak of the log-posterior, and its second derivatives at that point. When the data quality is
good, one may expect the individual datum likelihoods to be already quite convex, giving a very
peaky unimodal posterior: in this case the Gaussian approximation is likely to be both accurate,
and more quickly and easily located. More commonly, techniques such as simulated annealing may
be necessary when finding the maximum of complex functions of many parameters; in this case a
Gaussian may not be such a good approximation anyway.

B.4.2 Fisher Matrices

The Fisher information matrix (Fisher 1935) is widely used for forecasting survey performance
and for identifying dominant systematic effects (see e.g., Albrecht et al. 2009). The Fisher matrix
formalism is very closely related to the Laplace approximation to the parameter posterior described
above. The discussion that follows may seem unconventional to those more familiar with its
frequentist origins and presentation: our aim is to show how the formalism has been adapted to
modern Bayesian cosmology.

The Fisher matrix was originally defined to be

Fαβ = −
〈
∂2 lnP (x |q)
∂qα∂qβ

〉
, (B.13)

where x is a data vector, q is the vector of model parameters, and 〈. . .〉 denotes an ensemble
average. If the prior PDFs are non-uniform, we must replace the likelihood P (x |q) by the posterior
P (q |x ). In any case, we recognize the Laplace approximation and identify (by comparison with
Equation B.12) the ensemble average covariance matrix of the inferred parameters as F−1.

This estimate of the forecast parameter uncertainties really corresponds to the best case scenario,
as dictated by the Cramer-Rao theorem. More specifically, the estimated error of the parameter
qα is σ(qα) ≥ (Fαα)−1/2 if all other parameters are known precisely, or σ(qα) ≥ [(F−1)αα]1/2 if all
the parameters are estimated from the data.

Cosmological applications of the Fisher matrix were introduced by Jungman et al. (1996); Vogeley
& Szalay (1996); Tegmark et al. (1997); Tegmark (1997). The key is to identify the correct
likelihood function P (x |q) (which is anyway crucial for all inference techniques). However, the
Fisher matrix analysis has a further limitation due to the Gaussian approximation of P (q |x ) with
respect to q : the likelihood, priors and indeed choice of parametrization need to be such that
this approximation is a good one. Usual practice is to approximate the likelihood function as
Gaussian, and assert either Gaussian or uniform priors (both of which guarantee the Gaussianity
of the posterior PDF).
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If we approximate the likelihood function by a Gaussian distribution then,

P (x |q) =
1

(2π)N/2 det[C (q)]
exp

{
[x − x̄ (q)]T

C−1(q)
2

[x − x̄ (q)]
}
, (B.14)

where N is the dimension of the observables x , x̄ (q) is the ensemble average of x , C (q) =
〈(x − x̄ )(x − x̄ )T〉 is the covariance of x . The Fisher matrix is then (Tegmark et al. 1997)

Fαβ =
1
2

Tr
(
C−1 ∂C

∂qα
C−1∂C

∂qβ

)
+
∂x̄

∂qα
C−1 ∂x̄

∂qβ
, (B.15)

where we have dropped the variables q in C and x̄ for clarity. To avoid confusion, we note that
C is the covariance matrix of the data x , whereas F−1 is the covariance matrix of the parameters
q .

In the Gaussian approximation, marginalization, and moment-calculating integrals are analytic.
Independent Fisher matrices are additive; a Gaussian prior on qα, σP(qα), can be introduced via
F new

αα = Fαα + σ−2
P (qα). A Fisher matrix of the parameters q can be projected onto a new set of

parameters p via

F new
µν =

∑
α,β

∂qα
∂pµ

Fαβ
∂qβ
∂pν

. (B.16)

Fixing a parameter is equivalent to striking out its corresponding row and column in the Fisher
matrix. To obtain a new Fisher matrix after marginalizing over a parameter, one can strike out
the parameter’s corresponding row and column in the original covariance matrix (i.e., the inverse
of the original Fisher matrix) and then invert the resulting covariance matrix2.

B.4.3 Examples

At this point, we give two worked examples from observational cosmology, describing the data
model and Fisher matrix forecasts of parameter uncertainties.

Example 1: Type Ia Supernovae
For SNe, the observables are their peak magnitudes in a certain band

mi = m̄(q , zi) + ni, (B.17)

where the subscript i labels each SN, m̄ is the mean value of the SN peak magnitude at redshift
zi, the parameters q include both cosmological and nuisance parameters, and ni represents the
observational noise and intrinsic scatter of the peak magnitude. The mean peak magnitude is given
by

m̄i = M + 5 log [DL(w0, wa,Ωm,Ωk, h, . . . , z)] + evolution terms + const, (B.18)

where M3 is the mean absolute peak magnitude at z = 0, DL is the luminosity distance, and the
evolution terms account for a possible drift of the mean absolute peak magnitude with time. In
a number of forecasts, the evolution terms are simply model with a quadratic function az + bz2

(e.g., Albrecht et al. 2006; Knox et al. 2006; Zhan et al. 2008).
2For a better numerical treatment, see Albrecht et al. (2009).
3M is degenerate with the Hubble constant.
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We assume that the scatter ni 1) does not depend on cosmology or redshift, 2) is uncorrelated
with each other, and 3) is normally distributed, i.e.,

〈(mi − m̄i)(mj − m̄j)〉 = σ2
mδ

K
ij , (B.19)

P (m |q) = ΠiP (mi|q , σm) = Πi
1√

2πσm

exp
[
−(mi − m̄i)2

2σ2
m

]
, (B.20)

where δKij is the Kronecker delta function, and σm ∼ 0.15, then Fisher matrix reduces to

Fαβ = Σi
∂m̄i

∂qα

1
σ2

m

∂m̄i

∂qβ
. (B.21)

With a photometric redshift SN sample, the Fisher matrix has to be integrated over the photometric
redshift error distribution (Zhan et al. 2008):

Fαβ =
1
σ2

m

∫
np(zp)

∂m̄p(zp)
∂qα

∂m̄p(zp)
∂qβ

dzp (B.22)

m̄p =
∫

[5 logDL(w0, wa,Ωm,Ωk, h, . . . , z) +M + evol. terms + const.] p(z|zp)dz,

the subscript p signifies photometric redshift space, np(zp) is the SN distribution in photometric
redshift space, and p(z|zp) is the probability density of a SN at z given its photometric redshift zp.

Example 2: Gaussian Random Fields
The power spectrum is the covariance of the Fourier modes of the field. For an isotropic field, the
modes are uncorrelated, i.e.,

〈δ̂(k)δ̂∗(k ′)〉 = P (k)(2π)3δD(k − k ′), (B.23)

where P (k) is the power spectrum, and δD(k − k ′) is the Dirac delta function. By definition,
the modes δ̂(k) have zero mean. Since surveys are limited by volume, the wavenumbers must be
discrete. For a cubic survey of volume V = L3, we have

〈δ̂(k)δ̂∗(k ′)〉 = P (k)V δKn ,n ′ , (B.24)

where k = 2πn/L, and n = (n1, n2, n3) with integer nis running from −∞ to ∞. If the density
field is discretized, e.g., on a grid, then nis are limited by the Nyquist frequency. For convenience,
we use k and n interchangeably, with the understanding that k is discrete. If the power spectrum
is calculated based on discrete objects, e.g., galaxies, then we have

Pg(k) = P (k) + n−1
g , (B.25)

where ng is the galaxy number density.

For a Gaussian random field sampled by galaxies, the modes are normally distributed and are com-
pletely characterized by the power spectrum Pg(k). Using the Fourier modes (rather than the power
spectrum) as observables, we obtain the Fisher matrix using Equation B.15 and Equation B.24

Fαβ =
1
2

Σn
∂ lnPg(n)

∂qα

∂ lnPg(n)
∂qβ

, (B.26)
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where the summation runs over all available modes. When the survey volume is sufficiently large,
one can replace the summation in Equation B.26 with an integral (Tegmark 1997)

Fαβ =
V

2

∫
∂ lnPg(k)
∂qα

∂ lnPg(k)
∂qβ

k2dk

4π2
. (B.27)

In terms of angular power spectra, the Fisher matrix becomes

Fαβ = fsky

∑
`

2`+ 1
2

Tr
[
P−1(`)

∂P(`)
∂qα

P−1(`)
∂P(`)
∂qβ

]
, (B.28)

where fsky is the fraction of sky covered by the survey, and for each multipole `, P(`) is a matrix
of power spectra between pairs of redshift bins (see e.g, Equation 13.6 and Equation 15.3).

B.4.4 Sampling Methods

Probability distributions calculated on high-dimensional regular grids are rather unwieldy. A
Gaussian approximation allows integrals over the posterior to be performed analytically – but may
not provide sufficient accuracy especially if the PDF is not unimodal.

A far more useful characterization of the posterior PDF is a list of samples drawn from the dis-
tribution. By definition, the number density of these samples is proportional to the probability
density, such that (given enough samples) a smoothed histogram is a good representation of the
probability density function. Each histogram bin value is an integral over this PDF, as are all
other inferences. By sampling from the distribution, these integrals are calculated by Monte Carlo
integration (as opposed to the simple summation of a gridding algorithm). Marginal distributions
are trivial to calculate – the histogram needs only to be constructed in the required dimensions,
usually just one or two. Samples are also useful for the simple reason that they represent accept-
able fits: visualization of the model corresponding to each sample can provide much insight into
the information content of the data.

The problem is now how to draw samples from a general PDF P (θ). The Metropolis-Hastings
algorithm (and various derivatives) provides a flexible solution to this problem: see the books
by e.g. Gilks et al. (1996); Ó Ruanaidh & Fitzgerald (1996); Neal (1993); MacKay (2003) for
good introductions. This is the basic Markov chain Monte Carlo method, and works as follows.
A Markov chain is a series of random variables (specifically representing points in a parameter
space) whose values are each determined only by the previous point in the series. Generation of
a Markov chain proceeds as follows: a candidate sample point is drawn from a suitably chosen
“proposal density” S(θ′,θ), and then accepted with probability A(θ′,θ) – if not accepted, the
current sample is repeated to preserve the invariance of the target distribution. In the Metropolis-
Hastings algorithm, the acceptance probability is given by

A(θ′,θ) = min
[
1,
P (θ)
P (θ′)

]
, (B.29)

provided the proposal distribution S is symmetric about the previous sample point.

In other words, we accept the new sample if the probability density at that point is higher, and
otherwise accept it with probability equal to the ratio of new to old probability densities. Note
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that since the sampling procedure depends only on a probability ratio; the normalization of the
PDF need not be known: this is just the situation we find ourselves in when analyzing data, able
only to calculate the unnormalized product of likelihood and prior.

As seen in the previous paragraphs, the basic MCMC algorithm is very simple; whilst it guarantees
that the output list of sample points will have been drawn from the target density P , that is not the
same as fully sampling the distribution in a finite time. Consequently, the computational challenge
lies in the choice of proposal density S. If S is too compact, the chains take too long to explore the
parameter space; too broad, and the sample rejection rate becomes very high as too much time is
spent testing regions of low likelihood.

Lewis & Bridle (2002) provide a useful primer to the use of MCMC in cosmological parameter
estimation, and in particular CMB analysis. In the next sections we show some example sampled
PDFs, and then outline some common problems encountered when sampling.

Example: WMAP5

The WMAP team provide their cosmological parameter inferences in Markov Chain form, down-
loadable from their website4 (see the papers by Dunkley et al. 2009; Komatsu et al. 2009, for
details). In Figure B.1 we display posterior PDFs in a 4-dimensional cosmological parameter space
by plotting the WMAP team’s MCMC samples, marginalizing by projecting the samples onto two
different planes, and color-coding them by the samples’ Hubble constant values in order to visualize
this third dimension. In the top row, the likelihood function is for the WMAP 5th year data set
alone, while in the second row the likelihood for the “SN all” combined supernova type Ia data set
has been multiplied in.

MCMC Sampling Issues

MCMC sampling is often the preferred way to approximate a posterior PDF: the CPU time taken
scales (in principle) only linearly with the number of parameter space dimensions (as opposed to
exponentially in the case of brute-force gridding), it provides (in principle) accurate statistical
uncertainties that take into account the various (often non-linear) parameter degeneracies, and
avoids (in principle) the false maxima in the PDF that can cause Laplace approximation maximizers
either to need restarting in multiple locations, or worse, to give misleading results.

However, MCMC sampling can be affected by a number of problems. We give a very brief overview
here and refer the reader to the cited textbooks for more information. As the number of dimensions
increases, finding isolated sharp peaks in the very large volumes involved is a particularly difficult
problem. “Cooling” the process (starting by sampling from the prior, and gradually increasing
the weight of the likelihood during a “burn-in” phase) can help alleviate this – this also allows
evidence estimation via “thermodynamic integration” (Ó Ruanaidh & Fitzgerald 1996). These
burn-in samples are to be discarded.

It also gets progressively more difficult to move away from a false maximum: proposal distributions
that are too broad can lead to very high sample rejection rates and low chain mobility. Similarly

4http://lambda.gsfc.nasa.gov/
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Figure B.1: Marginalized posterior PDFs for cosmological parameters given the WMAP 5 year data set, represented
by MCMC sample density. Top: Pr(Ωm, ΩX |WMAP5 only) (left) and Pr(Ωm, w0|WMAP5 only) (right). Bottom:
Pr(Ωm, ΩX |WMAP5 + SNe) (left) and Pr(Ωm, w0|WMAP5 + SNe) (right). In each row, uniform priors were assumed
for Ωm, ΩX (the dark energy density parameter), w0 (the non-evolving dark energy equation of state) and H0.
Samples are color-coded by H0 to allow a third dimension to be visualized. The dashed lines are loci representing
universes with flat geometry amd a cosmological constant. The Markov chains in the two rows contain different
numbers of samples.

very narrow degeneracies also lead to high sample rejection rates. In these cases, the design of the
proposal distribution is key! One partial solution is to re-parametrize such that the degeneracies
are not so pronounced: a simple example is in CMB analysis, where working with ωb = Ωbh

2

instead of Ωb removes a particularly pronounced “banana” degeneracy. However, the prior PDFs
need especially careful attention in this case, since a uniform prior in A is never a uniform prior
in B(A).

To increase efficiency, updating the covariance matrix of the proposal distribution as sampling
proceeds has some considerable appeal (arising from the intuition that the best proposal distribu-
tion must be close to the target PDF itself), but the updating must be done carefully to preserve
detailed balance in the chains. Finally, how do you know when you are finished? Various conver-

570



B.4 PDF Characterization

gence tests on the chains have been proposed (e.g., Gelman & Rubin 1992); Dunkley et al. look at
the chain power spectrum to check for unwanted correlations. In general, it is usually found that
running multiple parallel Markov chains allow more tests and provide greater confidence.

Importance Sampling

We can incorporate new information into an MCMC inference by importance-sampling the poste-
rior distribution (see e.g., Lewis & Bridle 2002, for an introduction). This procedure allows us to
calculate integrals (such as means and confidence limits) over the updated posterior PDF, P2, by
re-weighting the samples drawn from the original PDF, P1. For example, the posterior mean value
of a parameter x:

〈x〉2 =
∫
x · P2(x) dx,

=
∫
x
P2(x)
P1(x)

· P1(x) dx. (B.30)

By weighting the samples from P1 by the ratio P2(x)/P1(x), we can emulate a set of samples
drawn directly from P2. It works most efficiently when P1 and P2 are quite similar, and fails if
P1 is zero-valued over some of the range of P2 or if the sampling of P1 is too sparse. In many
cases though, it provides an efficient way to explore the effects of both additional likelihoods and
alternative priors.

As an example, Figure B.2 shows the same marginalized posterior PDF from the WMAP 5-year
data set as in Figure B.1, but after importance sampling using the Hubble constant measurement
of H0 = 74.2± 3.6kms−1Mpc−1 by Riess et al. (2009). To make this plot, we interpret the Riess et
al. measurement as the Gaussian PDF Pr(H0|Riess), and then write the updated posterior PDF
arising from a joint analysis of the WMAP 5-year data and the Riess et al. data as follows:

Pr(H0, q|WMAP5, Riess) ∝ Pr(WMAP5|H0, q) · Pr(H0|Riess) Pr(q) (B.31)

= Pr(H0, q|WMAP5 only) · Pr(H0|Riess)
Pr(H0)

. (B.32)

Here, for clarity, the cosmological parameters other than H0 are denoted by the “vector” q =
{Om,ΩX , w0, . . .}.

In the second line, we have substituted the original posterior PDF, Pr(H0, q|WMAP5 only): from
this equation it is clear that the weight, P2(x)/P1(x), from Equation B.30 is just given by the
value of the PDF, Pr(H0|Riess), if (as was the case) the original prior on H0 was uniform. To
make the plots, each sample was added to a two-dimensional histogram according to its weight;
the histogram was then minimally smoothed and contours computed.
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Figure B.2: Marginalized posterior PDFs for cosmological parameters given the WMAP 5 year data set and
the Riess et al. (2009) Hubble constant measurement, obtained by importance-sampling (red curves). Left:
Pr(Ωm, ΩX |WMAP5, Riess) and right: Pr(Ωm, w0|WMAP5, Riess). The contours shown contain 68% and 95%
of the integrated posterior probability: the gray contours in the background show the PDFs without the Riess et al
Hubble constant constraint.
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Beltrán, M., Garćıa-Bellido, J., Lesgourgues, J., Liddle, A. R., & Slosar, A., 2005, Phys. Rev. D , 71, 063532
Dunkley, J. et al., 2009, ApJS , 180, 306
Fisher, R. A., 1935, J. Roy. Stat. Soc., 98, 39
Gelman, A., & Rubin, D. B., 1992, Statistical Science, 7, 457
Gilks, W. R., Richardson, S., & Spiegelhalter, D. J., 1996, Markov-Chain Monte-Carlo In Practice. Cambridge:

Chapman and Hall
Heavens, A. F., Kitching, T. D., & Verde, L., 2007, MNRAS , 380, 1029
Hobson, M. P., Bridle, S. L., & Lahav, O., 2002, MNRAS , 335, 377
Jaffe, A., 1996, ApJ , 471, 24
Jaynes, E., 2003, Probability Theory: The Logic of Science. Cambridge: CUP
Jeffreys, H., 1961, Theory of Probability. Oxford University Press
Jungman, G., Kamionkowski, M., Kosowsky, A., & Spergel, D. N., 1996, Phys. Rev. D , 54, 1332
Knox, L., Song, Y.-S., & Zhan, H., 2006, ApJ , 652, 857
Komatsu, E. et al., 2009, ApJS , 180, 330
Lewis, A., & Bridle, S., 2002, Phys. Rev. D , 66, 103511
Liddle, A. R., Mukherjee, P., Parkinson, D., & Wang, Y., 2006, Phys. Rev. D , 74, 123506
MacKay, D., 2003, Information Theory, Inference and Learning Algorithms. Cambridge: CUP
Marshall, P., Rajguru, N., & Slosar, A., 2006, Phys. Rev. D , 73, 067302
Mukherjee, P., Parkinson, D., Corasaniti, P. S., Liddle, A. R., & Kunz, M., 2006a, MNRAS , 369, 1725
Mukherjee, P., Parkinson, D., & Liddle, A. R., 2006b, ApJL, 638, L51
Neal, R., 1993, Probabilistic inference using markov chain monte carlo methods. Tech. Rep. CRG-TR-93-1, Depart-

ment of Computer Science, University of Toronto
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