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The ultimate goal of astronomical surveys is to deepen our fundamental understanding of the
Universe. One specific question to be addressed is the cosmological framework within which we
interpret the observations. Because it is not feasible to physically perturb the Universe for inves-
tigation, cross checks and confirmations by multiple lines of evidence are extremely important in
cosmology. The acceptance of dark matter by the community nearly 50 years after the seminal
proposal of Zwicky (1933, 1937) is a perfect example of how observations of galaxy rotational curves
(e.g., Rubin, Thonnard, & Ford 1978), dynamics of galaxy groups and clusters (for a review, see
Faber & Gallagher 1979), and galaxy X-ray emission (e.g., Fabricant, Lecar, & Gorenstein 1980)
from various surveys, working in unison, eventually shifted our paradigm of the Universe.

The accelerated cosmic expansion, inferred from luminosity distances of type Ia supernovae (Riess
et al. 1998; Perlmutter et al. 1999) and reinforced by large-scale structure and CMB observations
(Spergel et al. 2003) has led to yet another puzzle – dark energy. It poses a challenge of such
magnitude that, as stated by the Dark Energy Task Force (DETF), “nothing short of a revolution
in our understanding of fundamental physics will be required to achieve a full understanding of
the cosmic acceleration” (Albrecht et al. 2006).

The lack of multiple complementary precision observations is a major obstacle in developing lines
of attack for dark energy theory. This lack is precisely what LSST will address via the powerful
techniques of weak lensing (WL, Chapter 14) and baryon acoustic oscillations (BAO, Chapter 13)
– galaxy correlations more generally – in addition to SNe (Chapter 11), cluster counts (§ 13.6),
and other probes of geometry and growth of structure (such as H0 from strong lensing time delay
measurements in § 12.4). The ability to produce large, uniform data sets with high quality for
multiple techniques is a crucial advantage of LSST. It enables not only cross checks of the result
from each technique but also detections of unknown systematics and cross-calibrations of known
systematics. Consequently, one can achieve far more robust and tighter constraints on cosmological
parameters and confidently explore the physics of the Universe beyond what we know now.

Because the observables of these probes are extracted from the same cosmic volume, correlations
between different techniques can be significant. New observables can also emerge, e.g., galaxy-shear
correlations. A joint analysis of all the techniques with LSST must involve careful investigations
of the cross-correlations between these techniques.

In this Chapter, we describe several cosmological investigations enabled by the combination of
various LSST and external data sets. § 15.1 mainly demonstrates the complementarity between
BAO (galaxy angular power spectra, § 13.3) and WL (shear power spectra, § 14.4) techniques
in constraining the dark energy equation of state (EOS), especially in the presence of systematic
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uncertainties. Results from LSST SNeIa and cluster counts are shown at the end of this section.
Density fluctuations measured by BAO and WL are sensitive to the sum of the neutrino masses.
We estimate in § 15.2 that LSST, in combination with Planck, can constrain the neutrino mass
to ∆mν < 0.1 eV and determine the mass hierarchy. Conventional dark energy affects the growth
of structure indirectly through the expansion background, i.e., the Hubble “drag,” assuming that
dark energy clusters occur only on very large scales and with small amplitude. In contrast, gravity
that deviates from General Relativity (“modified gravity”) can have a direct impact on clustering
at all scales. Because the probes mentioned above and in previous chapters are sensitive to both the
expansion history of the Universe and the growth of structures, LSST can place useful constraints
on gravity theories as well. Several examples are given in § 15.3. § 15.4 shows that LSST can take
the advantage of being a very wide and deep survey to test the isotropy of distance measurements
across the sky and constrain anisotropic dark energy models. We finish with a discussion of
requirements on the cosmological simulations needed for carrying out the analyses described in
this and previous chapters. The details of the statistical analyses are given in Appendix B.

15.1 Joint Analysis of Baryon Oscillations and Weak Lensing1

Hu Zhan

15.1.1 Introduction

BAO (galaxy power spectra, § 13.3) and WL (shear power spectra, § 14.4) techniques each have
their own systematics and parameter degeneracies. When the shear and galaxy distribution are
analyzed jointly, one gains from the extra information in the galaxy–shear cross power spectra,
which is not captured in either technique alone. Moreover, the two techniques can mutually
calibrate some of their systematics and greatly strengthen parameter constraints.

The WL technique extracts cosmological information from the distribution of minute distortions
(shear) to background galaxies caused by foreground mass (see § 14.1). It has the advantage that it
measures the effect of all matter, luminous or not, so that the shear statistics reflect the clustering
properties of the bulk of the matter – dark matter, for which gravity alone can provide fairly
robust predictions via linear theory on large scales and N -body simulations on small scales. To
achieve its power, however, the WL technique requires unprecedented control of various systematic
effects. One example is the photometric redshift error distribution. Because the kernel of the
WL shear power spectrum peaks broadly between the observer and the source, the shear power
spectrum is not very sensitive to the redshift distribution of source galaxies. For a redshift bin
at z = 2, a shift of the bin by ∆z = 0.1 causes very little change in the shear power spectrum.
However, the inference for cosmological parameters can change more markedly with the redshift
difference ∆z = 0.1. In other words, one must know the true-redshift distribution of galaxies in
each photometric redshift bin accurately in order to interpret the WL data correctly.

1Weak lensing in this section refers to two-point shear tomography (§ 14.4.1) only. In the joint analysis of baryon
oscillations and weak lensing, galaxy–shear cross power spectra (§ 14.2) are also included.
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15.1 Joint Analysis of BAO and WL

Galaxies provide a proxy for mass. One may relate fluctuations in the galaxy number density
to those in all matter by the galaxy clustering bias, which evolves with time and is assumed
to be scale independent only on large scales. Although this does not severely impact the BAO
technique, which utilizes the small oscillatory features in the galaxy power spectrum to measure
distances (see § 13.3), knowing the galaxy bias accurately to the percent level does help improve
cosmological constraints from BAO. Because the kernel of the galaxy (angular) power spectrum
is determined by the true-redshift distribution of galaxies in a photometric redshift bin, galaxy
power spectra can be sensitive to the photometric redshift error distribution. For instance, with
the Limber approximation, the cross power spectrum between two redshift bins is given by the
overlap between the two bins in true-redshift space. A small shift to one of the redshift bins can
change the amplitude of the cross power spectrum significantly, suggesting that the galaxy power
spectra can help calibrate the photometric redshift error distribution (§ 14.5.1).

15.1.2 Galaxy and Shear Power Spectra

We extend the definition of galaxy power spectrum in § 13.3 and shear power spectrum in § 14.4
to include the galaxy–shear power spectrum (Hu & Jain 2004; Zhan 2006)
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where lower case subscripts correspond to the tomographic bins, upper case superscripts label the
observables, i.e., X = g for galaxies or γ for shear; H(z) is the Hubble parameter, DA(z) is the co-
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where b(z) is the linear galaxy clustering bias, and Ωm and H0 are, respectively, the matter fraction
at z = 0 and Hubble constant. The galaxy redshift distribution, ni(z), in the ith tomographic bin
is an average of the underlying three-dimensional galaxy distribution over angles, and the mean
surface density, n̄i, is the total number of galaxies per steradian in bin i. The distribution, ni(z),
is broader than the nominal width of the tomographic bin (defined in photometric redshift space)
because of photometric redshift errors.

We only include galaxy power spectra on largely linear scales, e.g., the scales of BAOs, in our
analysis, so that we can map the matter power spectrum to galaxy power spectrum with a scale-
independent but time-evolving linear galaxy bias (Verde et al. 2002; Tegmark et al. 2004). One
may extend the analysis to smaller scales with a halo model to describe the scale dependency of
the galaxy bias and, in fact, can still constrain the scale-dependent galaxy bias to 1% level (Hu &
Jain 2004).
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The observed power spectra have contributions from galaxy shot (shape) noise n̄−1
i (γ2

rmsn̄
−1
i ),

multiplicative errors fX
i , and additive errors AX

i :

(CXY
` )ij = (1 + δKXγf

X
i + δKY γf

Y
j )PXY

ij (`) + δKXY

[
δKij
X2

rms

n̄i
+ ρX

ijA
X
i A

Y
j

(
`

`X∗

)ηX
]
, (15.3)

where δKXY and δKij are Kronecker delta functions, ρX
ij determines how strongly the additive errors of

two different bins are correlated, and ηX and `X∗ account for the scale dependence of the additive
errors. Again, X and Y refer to galaxies g or shear γ. For galaxies, grms ≡ 1, and, for the
shear, γrms ∼ 0.2 is due to the intrinsic shape of galaxies and measurement errors. Note that the
multiplicative error of galaxy number density is degenerate with the galaxy clustering bias and
is hence absorbed by bi. Below the levels of systematics future surveys aim to achieve, the most
important aspect of the (shear) additive error is its amplitude (Huterer et al. 2006), so we simply
fix ρX = 1 and ηX = 0. For more comprehensive accounts of the above systematic uncertainties,
see Huterer et al. (2006), Jain et al. (2006), Ma et al. (2006), and Zhan (2006).

We forecast LSST performace with a Fisher matrix analysis. See § B.4.2 for a detailed description
of the Fisher matrix calculation. The BAO aspect of the calculations, which includes the galaxy
binning, galaxy bias, and photometric redshift treatment, is the same as that in § 13.3. WL results
in this section are based on the two-point shear tomography described in § 14.4, and the joint BAO
and WL results include the galaxy–shear power spectra (Equation 15.3) as well. We use 10 shear
bins evenly spaced between z = 0.001 and 3.5.

15.1.3 Complementarity Between BAO and WL

BAO and WL have their unique strengths and are very complementary to each other. A joint
analysis benefits from the strength of each technique: BAO can help self-calibrate the photometric
redshift error distribution, while WL can help constrain the galaxy bias as the different power
spectra have different dependence on the galaxy bias.

Photometric redshift errors are one of the most critical systematics for WL tomography. Red-
shift errors directly affect the interpretation of the distance–redshift and growth–redshift relations.
Because of its broad lensing kernel, WL cannot self-calibrate the photometric redshift error distri-
bution, but, as shown in § 13.3, the cross-bin galaxy power spectra can calibrate the photometric
redshift rms and bias parameters to ∼ 10−3(1 + z), which is sufficient for WL (Ma et al. 2006;
Zhan 2006).

Figure 15.1 demonstrates that while the WL constraints on the dark energy EOS parameters, w0

and wa, are sensitive to systematic uncertainties in the photometric redshift error distribution, the
joint BAO and WL results remain fairly immune to these systematics. The dramatic improvement
of the BAO+WL results over the WL-alone results is due to the cross-calibration of galaxy bias and
photometric redshift uncertainties and is independent of the dark energy EOS parametrization.

The statistics-only results in Figure 15.1 are marginalized over the other nine cosmological param-
eters listed in Table A.1 and 30 galaxy clustering bias parameters. We impose no prior on the
galaxy bias (for numerical reasons, we take σP (ln bi) = 1000). The photometric redshift parameters
are fixed, and the power spectra errors in Equation 15.3 are not included.
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15.1 Joint Analysis of BAO and WL

Figure 15.1: 1–σ error contours of the dark energy EOS parameters w0 and wa from LSST WL shear power spectra
(left panel) and joint LSST WL and BAO (right panel). The shaded areas represent the results with statistical
errors only. The solid contours correspond to those with the anticipated level of systematic errors, which include the
uncertainty in the photometric redshift error distribution and additive and multiplicative errors in the power spectra
(see, e.g., § 3.8 and § 14.5). The assumed photometric redshift systematics would require a redshift calibration
sample of 3000 spectra per unit redshift interval if the photometric redshift error distribution were Gaussian. The
dotted contours relax the requirement to 188 spectra per unit redshift. A much larger sample will be needed for
realistic photometric redshifts. The joint WL and BAO results are less affected by the systematics because of the
ability to self-calibrate the systematics. See text for details of the calculations.

For anticipated systematics, we assume that σP (δzi) = 2−1/2σP (σz,i) = 0.05σz,i = 0.0025(1 + z),
σP (fi) = 0.005, Ag

i = 10−4, and Aγ
i = 10−5. For larger systematics, we relax the photometric

redshift priors to σP (δzi) = 2−1/2σP (σz,i) = 0.2σz,i = 0.01(1 + z) and Aγ
i = 10−4.5. See § 3.8 and

§ 14.5 for discussions about the systematics.

The linear galaxy clustering bias, b, is degenerate with the linear growth function, G, for the
angular BAO technique. Therefore, one cannot extract much useful information from the growth
of the large-scale structure with photometric redshift BAO. One can break this degeneracy by
jointly analyzing the galaxy and shear power spectra, because the galaxy–galaxy, galaxy–shear,
and shear–shear power spectra depend on different powers of the linear galaxy bias (b2, b1, and b0

respectively). CMB data help as well by providing an accurate normalization of the matter power
spectrum. The resulting constraints on the linear galaxy bias parameters can reach the percent
level (Hu & Jain 2004; Zhan 2006; Zhan, Knox, & Tyson 2009), so that growth information can
be recovered from galaxy power spectra as well.

15.1.4 Precision Measurements of Distance and Growth Factor

Dark energy properties are derived from variants of the distance–redshift and growth–redshift
relations. Different dark energy models feature different parameters, and various phenomenological
parametrizations may be used for the same quantity such as the EOS. In contrast, distance and
growth measurements are model-independent, as long as dark energy does not alter the matter
power spectrum directly. Hence, it is desirable for future surveys to provide results of the distance

533



Chapter 15: Cosmological Physics

Figure 15.2: Marginalized 1σ errors on the co-moving distance (open triangles) and growth factor (open circles)
parameters from the joint analysis of LSST BAO and WL (galaxy–galaxy, galaxy–shear, and shear–shear power
spectra) with a conservative level of systematic uncertainties in the photometric redshift error distribution and
additive and multiplicative errors in the shear and galaxy power spectra. The maximum multiple used for WL is
2000, and that for BAO is 3000 (with the additional requirement ∆2

δ(`/DA; z) < 0.4). The growth parameters,
G0 . . . D14, are evenly spaced in log(1 + z) between z = 0 and 5, and the distance parameters, D1 . . . D14, start at
z1 = 0.14 (see text for details). The error of each distance (growth) parameter is marginalized over all the other
parameters including growth (distance) parameters and other distance (growth) parameters. The joint constraints
on distance are relatively insensitive to the assumed systematics. Figure from Zhan et al. (2009), with permission.

and growth of structure, so that different theoretical models can be easily and uniformly confronted
with the data.

Figure 15.2 demonstrates that joint LSST BAO and WL can achieve ∼ 0.5% precision on the
distance and ∼ 2% on the growth factor from z = 0.5 to 3 in each interval of ∆z ∼ 0.3 (Zhan et al.
2009). Such measurements can test the consistency of dark energy or modified gravity models
(e.g., Knox 2006; Heavens et al. 2007).

15.1.5 Constraining the Mean Curvature

The mean curvature of the Universe has a significant impact on dark energy measurements. For
example, the curvature parameter Ωk is completely degenerate with a w = −1/3 dark energy if
dark energy clustering (§ 13.7) is neglected. In the concordance ΛCDM model (w = −1), allowing
Ωk to float greatly weakens the ability of supernovae at z < 1.7 to constrain wa (Linder 2005b;
Knox 2006). LSST BAO and WL can determine Ωk to ∼ 10−3 separately and < 10−3 jointly,
and their results on w0 and wa are not affected in practice by the freedom of Ωk (Zhan 2006;
Knox 2006). The reason is that low-redshift growth factors, which can be measured well by WL,
and high-redshift distances, which can be measured well by BAO, are very effective for measuring
Ωk and, hence, lifting the degeneracy between Ωk and wa (Zhan & Knox 2006). Given its large
area, LSST can place a tight upper limit on curvature fluctuations, which are expected to be small
(∼ 10−5) at the horizon scale in standard inflation models.
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15.1 Joint Analysis of BAO and WL

Figure 15.3: Joint w0–wa constraints from LSST BAO (dashed line), cluster counting (dash-dotted line), supernovae
(dotted line), WL (solid line), joint BAO and WL (green shaded area), and all combined (yellow shaded area). The
BAO and WL results are based on galaxy–galaxy, galaxy–shear, and shear–shear power spectra only. Adding other
probes such as strong lensing time delay (§ 12.4), ISW effect (§ 13.7), and higher-order galaxy and shear statistics
(§ 13.5 and § 14.4) will further improve the constraints.

The aforementioned results are obtained either with the assumption of matter dominance at z & 2
and precise independent distance measurements at z & 2 and at recombination (Knox 2006) or
with a specific dark energy EOS: w(z) = w0 + waz(1 + z)−1 (Knox et al. 2006b; Zhan 2006).
However, if one assumes only the Robertson-Walker metric without invoking the dependence of
the co-moving distance on cosmology, then the pure metric constraint on curvature from a simple
combination of BAO and WL becomes much weaker: σ(Ω′

k) ' 0.04f−1/2
sky (σz0/0.04)1/2 (Bernstein

2006)2.

Our result for Ω′
k from LSST WL or BAO alone is not meaningful, in agreement with Bernstein

(2006). However, because WL and BAO measure very different combinations of distances (see,
e.g., Figure 6 of Zhan et al. 2009), breaking the degeneracy between Ω′

k and other parameters, the
joint analysis of the two leads to σ(Ω′

k) = 0.017, including anticipated systematics in photometric
redshifts and power spectra for LSST. This result is better than the forecast derived from the shear
power spectra and galaxy power spectra in Bernstein (2006) because we include in our analysis
more information: the galaxy–shear power spectra.

15.1.6 Results of Combining BAO, Cluster Counting, Supernovae, and WL

We show in Figure 15.3 w0–wa constraints combining four LSST probes of dark energy: BAO,
cluster counting, supernovae, and WL. The cluster counting result is from Fang & Haiman (2007)
and the supernova result is based on Zhan et al. (2008). Because each probe has its own parameter
degeneracies, the combination of any two of them can improve the result significantly. As mentioned

2Ωk affects both the co-moving distance and the mapping between the co-moving distance and the angular diameter
distance, while Ω′

k affects only the latter. See Equation 13.12.
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Figure 15.4: Eigensystem analysis of joint LSST BAO and WL (galaxy–galaxy, galaxy–shear, and shear–shear
power spectra) constraints on a 30-dimensional dark energy EOS model. The dark energy EOS is spline-interpolated
between 30 EOS parameters evenly spaced between a = 0 and 1 with a fiducial model of w = −1. Left panel : The
first three best-determined dark energy EOS eigenmodes (departure from w = −1) with LSST BAO+WL. Right
panel : 1-σ errors of the EOS eigenmodes. The errors will be proportional to the square root of the dimension of the
dark energy EOS for sufficiently large dimensions.

above, BAO and WL are highly complementary to each other. Much of the complementarity
is actually in parameter space (such as photometric redshifts and galaxy bias) that has been
marginalized over. In Figure 15.3, we see that cluster counting is quite effective in constraining
w0 and that it is directly complementary to WL and BAO in the w0–wa plane. When all the four
probes are combined, the error ellipse area decreases by ∼ 30% over the joint BAO and WL result.

The w0–wa parametrization in Figure 15.3 does not capture the complexity of all dark energy
models. It also significantly underestimates the full capabilities of Stage 4 surveys (Albrecht &
Bernstein 2007), such as that of the LSST. More generally, one may allow the EOS to vary inde-
pendently at different redshifts and let the data determine the EOS eigenmodes and their errors,
which can then be used to constrain dark energy models. Figure 15.4 presents the best determined
dark energy EOS eigenmodes and their errors from LSST BAO+WL for a 30-dimensional EOS
model (Albrecht & Bernstein 2007; Albrecht et al. 2009). It is seen that the best determined mode
is sensitive to the dark energy EOS at z ∼ 0.8. The eigensystem analysis gives the expected noise
of the eigenmodes, and one can then project dark energy models into the orthogonal eigenmode
space to constrain the models. Detailed calculations show that LSST can eliminate a large space
of quintessence models (e.g., Barnard et al. 2008).

15.2 Measurement of the Sum of the Neutrino Mass

Licia Verde, Alan F. Heavens

Current limits on the neutrino mass from cosmology come most robustly from the CMB,
∑
mν <

1.3 eV at 95% confidence (Dunkley et al. 2009), and with the addition of large-scale structure
and supernova data to < 0.6 eV (Komatsu et al. 2009). With the addition of Lyman α data, the
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Figure 15.5: Forecasted constraints in the context of what is known to date from neutrino oscillations experiments.
The x-axis is the mass of the lightest neutrino in eV, and the y-axis is the sum of neutrino masses (also in eV). The
narrow green band represents the normal hierarchy and the narrow red band the inverted one: for light neutrinos
the two hierarchies are in principle distinguishable. The light blue (horizontal shaded) regions represent the 1 − σ
constraints for the combination Planck+LSST three-dimensional lensing, for two fiducial models of massive and
nearly massless lightest neutrino, consistent with the normal hierarchy. The lighter regions are 1 − σ constraints
for a general cosmological model with massive neutrinos (see text for details). The darker horizontal band shows
the forecasted 1 − σ constraint obtained in the context of a power-law P (k), ΛCDM + massive neutrinos model.
These constraints offer the possibility in principle to distinguish between the normal and inverted hierarchies. Figure
courtesy of E. Fernandez-Martinez.

limits may be pushed as low as 0.17 eV (Seljak et al. 2006), with model-dependent assumptions.
For a summary of experimental limits on neutrino masses, see Fogli et al. (2008). In the future,
the primary robust tools for constraining massive neutrinos are the CMB combined with a large
scale structure survey and measurement of the three-dimensional cosmic shear. In the three-
dimensional cosmic shear technique (Heavens 2003; Castro et al. 2005; Heavens et al. 2006; Kitching
et al. 2007) the full three-dimensional shear field is used without redshift binning, maximizing the
information extracted. Massive neutrinos suppress the growth of the matter power spectrum in a
scale-dependent way, and it is from this signature that cosmic shear measurements can constrain
neutrino properties. Inevitably, there is a degeneracy with dark energy parameters, as dark energy
also affects the growth of perturbations (Kiakotou et al. 2008). Following Kitching et al. (2008a)
we explore the constraints on neutrino properties obtained with a Fisher matrix approach for a
survey with the characteristics of LSST assuming a Planck prior. Unless otherwise stated, the
reported constraints are obtained allowing for running of the spectral index of the primordial
power spectrum, non-zero curvature and for a dark energy component with equation of state
parametrization given by w0, wa; all results on individual parameters are fully marginalized over
all other cosmological parameters.

By combining three-dimensional cosmic shear constraints achievable with a survey like LSST with
constraints achievable with Planck’s data, the massive neutrino (fiducial values mν = 0.66 eV ;
Nν = 3) parameters could be measured with marginal errors of ∆mν ∼ 0.03 eV and ∆Nν ∼ 0.08,
a factor of 4 improvement over Planck alone. If neutrinos are massless or have a very small mass
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Figure 15.6: The 68% and 95% confidence intervals for the sum of neutrino masses and the fraction of mass in
the heaviest neutrino, using Planck and LSST’s WL survey. marginalized over other parameters in a 10-parameter
cosmological model. Figure from De Bernardis et al. (2009), with permission.

(fiducial model mν = 0 eV ; Nν = 3) the marginal errors on these parameters degrade (∆mν ∼ 0.07
eV and ∆Nν ∼ 0.1), but there is still a similar improvement over Planck alone. This degradation in
the marginal error occurs because the effect of massive neutrinos on the matter power spectrum and
hence on three-dimensional weak lensing is non-linear. These findings are in good agreement with
an independent analysis (Hannestad et al. 2006). Alternatively, the constraints could improve by
as much as a factor of 2 if complementary data sets (such as direct measurements of the expansion
history from BAO or supernovae) were used to lift the degeneracies between mν and the running of
the spectral index, wa and w0 (Kitching, private communication). As discussed in Kitching et al.
(2008b) and Kitching et al. (2008a), a degradation in errors by a factor of ∼

√
2 is expected due

to systematics.

Figure 15.5 shows these constraints in the context of what is known currently from neutrino
oscillations experiments. Particle physics shows that neutrinos come in three flavors: muon, tau,
and electron neutrinos and that they oscillate i.e., as they propagate they can change flavor; the
neutrino flavor eigenstates are not the same as the neutrino mass eigenstates (simply called 1 2 3).
In the standard model for particle physics, the existence of flavor oscillations implies a non-zero
neutrino mass because the amount of mixing between the flavors depend on their mass differences.
The properties of the mixing are described by a “mixing matrix” which is like a rotation matrix
specified by the mixing angles θ12, θ13, etc. Oscillation experiments have so far determined absolute
values of neutrino mass differences, one mass difference being much smaller than the other one.
However neither the sign of the mass difference nor the absolute mass scale are known. There
are, therefore, two possibilities: a) the “normal hierarchy,” two neutrinos are much lighter than
the third or b) an “inverted hierarchy,” in which one neutrino is much lighter than the other two.
Cosmology, being sensitive to the sum of the neutrino masses, can offer complementary information
to particle physics experiments in two ways: a) a determination of the total neutrino mass will give
an absolute mass scale and b) since in the normal hierarchy the sum of neutrino masses is lower
(by up to a factor of 2, depending on the absolute mass scale) than in the inverted hierarchy, a
determination of the total neutrino mass with an error � 0.1 eV may select the neutrino hierarchy.
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15.2 Measurement of the Sum of the Neutrino Mass

Figure 15.7: The predicted evidence for the number Nν of neutrinos individually for three-dimensional cosmic shear
using the fiducial survey combined with a Planck prior. The solid line shows the conditional evidence assuming that
the other parameter is fixed at its fiducial value, the dashed line shows the marginal expected evidence when the
possible values of the hidden parameter are taken into account. The dot-dashed lines show the defining evidence
limits on the Jeffreys scale where ln B < 1 is “inconclusive,” 1 < ln B < 2.5 is “substantial” evidence in favor of a
model, 2.5 < ln B < 5 is “strong,” and ln B > 5 is “decisive.” Reprinted figure with permission from Kitching et al.
(2008a), http://link.aps.org/abstract/PRD/v77/e103008.

This can be appreciated in the green and red narrow bands of Figure 15.5.

Particle physics experiments that will be completed by the time of LSST do not guarantee a
determination of the neutrino mass Σmν if it lies below 0.2 eV. Neutrino-less double beta decay
experiments will be able to constrain neutrino masses only if the hierarchy is inverted and neutrinos
are Majorana particles (i.e., their own anti-particle). On the other hand, oscillation experiments
will determine the hierarchy only if the composition of electron flavor in all the neutrino mass states
is large (i.e., if the mixing angle θ13 is large). Cosmological observations are principally sensitive
to the sum of neutrino masses. However, there is some sensitivity to individual masses, due to
features in the power spectrum arising from the different redshifts when the neutrinos become non-
relativistic. The effects are weak (Slosar 2006), but a large, deep weak lensing survey in combination
with Planck, could exploit this signal and tighten the above constraints further. Thus, the LSST
survey, together with CMB observations, could offer valuable constraints on neutrino properties
highly complementary to particle physics parameters.

De Bernardis et al. (2009) parametrized neutrino masses using α, where m3 ≡ α
∑
mν under the

weak assumption that m1 = m2. α ∼ 1 represents the normal hierarchy for very low mass of
the lightest neutrino, and α ' 0 represents the inverted hierarchy. They compute the expected
marginal error on α for a fiducial model consistent with the direct hierarchy: this is shown in
Figure 15.6: distinguishing the hierarchy is within reach of a large-scale weak lensing survey such
as could be undertaken with LSST, with an expected marginal error on α of 0.22 (for normal
hierarchy). De Bernardis et al. (2009) also point out that assumption of the wrong hierarchy can
bias other cosmological estimates by as much as 1− 2σ.

These constraints have also been considered in the framework of Bayesian evidence (Kitching et al.
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2008a). The Bayes factor is a tool for model selection, and can be used to quantify an experiment’s
ability to distinguish one model from another (§ B.3). The standard model predicts three neutrino
species; corrections to account for quantum electrodynamics (QED) effects and for neutrinos being
not completely decoupled during electron-positron annihilation imply Neff = 3.04. Any light
particle that does not couple to electrons, ions, and photons will act as an additional relativistic
species. Departures from the standard model, which are described by a deviation Neff 6= 3.04,
can arise from the decay of dark matter particles, quintessence, exotic models, and additional
hypothetical relativistic particles such as a light majoron or a sterile neutrino. Such hypothetical
particles are constrained from standard big bang nucleosynthesis (BBN), where the allowed extra
relativistic degrees of freedom are NBBN

eff = 3.1+1.4
−1.2 (see e.g., Mangano et al. 2007). BBN constraints

rely on different physics and the energy density in relativistic species may easily change from the
time of BBN to the later Universe.

Figure 15.7 shows the predicted evidence for the numberNν of neutrinos from the analysis described
above. The solid line shows the conditional evidence assuming that the other parameter is fixed at
its fiducial value, the dashed line shows the marginal expected evidence when the possible values
of the hidden parameter are taken into account. We see that only if Neff > 3.4 will the evidence
against the standard model be decisive.

To summarize: the errors on the sum of the neutrino masses from a weak lensing analysis of a
fiducial LSST survey are impressively small, and there is some sensitivity to individual neutrino
masses, enough in principle to distinguish between the normal and inverted hierarchies. Improve-
ment in constraints on the effective number of neutrinos is also possible, but the constraints are
not expected to be particularly tight.

15.3 Testing Gravity

Alan F. Heavens, Licia Verde

15.3.1 Introduction

The acceleration of the Universe is such an unexpected feature that it has spawned a number of
explanations, many of which are very far-reaching in their consequences. The simplest solution is
found in Einstein’s General Theory of Relativity (GR), in the form of the infamous cosmological
constant. In a more modern guise, this term is placed on the opposite side of Einstein’s field
equation, as a source term, and is interpreted as a vacuum energy density. This opens up a wealth
of more general possibilities that the source is not actually vacuum, but a slowly rolling dark energy
field, which may evolve. Since this field would need to account for about 75% of the Universe’s
energy budget, determining its properties and nature is essential for a full understanding of the
Universe. In addition to this possibility, there is an even more radical solution. As a cosmological
constant, Einstein’s term represents a modification of the gravity law itself, rather than an unusual
source of gravity. Thus it is compelling to raise the question of whether the acceleration is driven
by a new, beyond-Einstein theory of gravity. Although no compelling theory currently exists,
suggestions include modifications to GR arising from extra dimensions, as might be expected from
string theory braneworld models. There are potentially measurable effects of such exotic gravity
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models that LSST could probe (e.g., Lue et al. 2004; Song 2005; Ishak et al. 2006; Knox et al.
2006a; Zhang et al. 2007), and finding evidence for extra dimensions would of course signal a radical
departure from our conventional view of the Universe.

In this section we focus on measurements that might be made to distinguish GR from modified
gravity models. We will restrict the discussion to scalar perturbations, and how they are related to
observation. The interval in the conformal Newtonian gauge may be written in terms of two scalar
perturbations, ψ being the potential fluctuation and φ the curvature perturbation, as follows

ds2 = a2(η)
[
(1 + 2ψ)dη2 − (1− 2φ)d~x2

]
, (15.4)

where we assume a flat background Universe for simplicity. This assumption is easily relaxed. a(η)
is the scale factor as a function of conformal time.

In GR, and in the absence of anisotropic stresses (a good approximation for epochs when photon
and neutrino streaming are unimportant), φ = ψ. In essence, the information is all contained in
these potentials and how they evolve, and these will depend on the gravity model. In modified
gravity, one expects that the Poisson law is modified, changing the laws for ψ and φ. WL and
spectroscopic galaxy surveys together can provide consistency tests for the metric perturbations,
density fluctuations, and velocity field in the GR framework (e.g., Zhang et al. 2007; Song & Doré
2008). Furthermore, (Zhang et al. 2007) show that the ratio of the Laplacian of the Newtonian
potentials to the peculiar velocity divergence can be a clean probe of modified gravity – independent
of galaxy-mass bias and the scale of mass perturbations.

The difference between φ and ψ can be characterized (Daniel et al. 2009) by the slip, $. Since this
may be scale- and time-dependent, we define in Fourier space

ψ(k, a) = [1 +$(k, a)]φ(k, a), (15.5)

where $ ≡ 0 in GR. We may also write the modified Poisson equation in terms of the matter
perturbation δm and density ρm as (Amendola et al. 2008)

− k2φ = 4πGa2ρmδmQ(k, a), (15.6)

which defines Q as an effective change in the Gravitational Constant G.

Different observables are sensitive to ψ and φ in different ways (Jain & Zhang 2008). For example,
the ISW effect depends on ψ̇ + φ̇, but the effect is confined to large scales, and cosmic variance
precludes accurate use for testing modified gravity. Peculiar velocities are sourced by ψ, and LSST
may be a useful source catalog for later spectroscopic surveys to probe this. Lensing is sensitive
to ψ + φ, and this is the most promising route for LSST to probe beyond-Einstein gravity. The
Poisson-like equation for ψ + φ is

− k2(ψ + φ) = 2Σ
3H2

0Ωm

2a
δm, (15.7)

where Σ ≡ Q(1 +$/2). For GR, Q = 1, Σ = 1, and $ = 0. The Dvali-Gabadadze-Porrati (DGP)
braneworld model (Dvali et al. 2000) has Σ = 1, so mass perturbations deflect light in the same
way as GR, but the growth rate of the fluctuations differs. Thus we have a number of possible
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observational tests of these models, including probing the expansion history, the growth rate of
fluctuations, and the mass density-light bending relation.

Some methods, such as study of the luminosity distance of Type Ia supernovae (SNe; e.g., Riess
et al. 1998), baryonic acoustic oscillations (BAO; e.g., Eisenstein & Hu 1998), or geometric weak
lensing methods (e.g., Taylor et al. 2007) probe only the expansion history, whereas others such as
three-dimensional cosmic shear weak lensing or cluster counts can probe both. Models with mod-
ified gravity laws predict Universe expansion histories which can also be explained with standard
GR and dark energy with a suitable equation of state parameter w(z). In general, however, the
growth history of cosmological structures will be different in the two cases, allowing the degeneracy
to be broken (e.g., Knox et al. 2006a; Huterer & Linder 2007; but see Kunz & Sapone 2007).

15.3.2 Growth Rate

The growth rate of perturbations in the matter density ρm, δm ≡ δρm/ρm, is parametrized as a
function of scale factor a(t) by

δm
a
≡ g(a) = exp

{∫ a

0

da′

a′
[
Ωm(a′)γ − 1

]}
, (15.8)

where Ωm(a) is the density parameter of the matter. In the standard GR cosmological model,
γ ' 0.55, whereas in modified gravity theories it deviates from this value (Linder 2005a). As a
strawman example, the flat DGP braneworld model (Dvali et al. 2000) has γ ' 0.68 on scales much
smaller than those where cosmological acceleration is apparent (Linder & Cahn 2007). While this
is not the most general model (in principle γ might, for example, depend on scale) this offers a
convenient Minimal Modified Gravity parametrization (Linder & Cahn 2007; Huterer & Linder
2007).

Measurements of the growth factor can be used to determine the growth index γ. It becomes a
very interesting question to ask whether a given method or observational set up could distinguish
between the dark energy and modified gravity scenarios. In contrast to parameter estimation,
this is an issue of model selection, which has been the subject of recent attention in cosmology.
That is, one might compare a dark energy model that has a fixed GR value for γ with a modified
gravity model whose γ is determined by the data and ask “do the data require the additional
parameter and therefore signal the presence of new physics?” This question may be answered with
the Bayesian evidence, B, which is proportional to the ratio of probabilities of two or more models,
given some data (see § B.3 for more details). To quantify how LSST will help in addressing the
issue of testing gravity using the growth of structures, we follow Heavens et al. (2007).

Figure 15.8 shows how the Bayesian evidence for GR changes with increasing true deviation of γ
from its GR value for a combination of a Stage 4 WL survey (comparable to our fiducial LSST
survey) and Planck (Heavens et al. 2007). The expected evidence ratio changes with progressively
greater differences from the GR growth rate. The combination of WL and Planck could strongly
distinguish between GR and minimally-modified gravity models whose growth index deviates from
the GR value by as little as δγ = 0.048. Even with the WL data alone, one should be able to
decisively distinguish GR from the DGP model at lnB ' 11.8, or, in the frequentist view, 5.4σ
(Heavens et al. 2007). The combination of WL+Planck+BAO+SN should be able to distinguish
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Figure 15.8: Bayesian evidence B for GR as a function of the true deviation of the growth index from GR,
δγ = γ − 0.55, for a Stage 4 WL survey comparable to our fiducial survey in combination with Planck. The larger
the B value, the greater the statistical power of this survey to distinguish the models. If modified gravity is the
true model, GR will be favored by the data to the left of the cusp (B > 1), and increasingly disfavored to the
right (B < 1). The Jeffreys scale of evidence (Jeffreys 1961) is as labeled. Joint BAO and WL will place stronger
constraints. Figure from Heavens et al. (2007), with permission.

δγ = 0.041 at 3.41σ. A vacuum energy General Relativity model will be distinguishable from a
DGP modified-gravity model with log evidence ratio lnB ' 50 with LSST + Planck; the three-
dimensional lensing data alone should still yield a “decisive” lnB ' 11.8. An alternative approach
is to explore whether the expansion history and growth rate are consistent assuming GR (Lue et al.
2004; Song 2005; Ishak et al. 2006; Knox et al. 2006a).

Next we turn to constraints on the slip. Considering a simplified model (Daniel et al. 2009),
where $ = $0(1 + z)−3 is a specific function of scale factor only, the expected errors on $0, after
marginalizing over other cosmological parameters, are shown in Figure 15.9. We see that LSST
could improve vastly on what is currently possible.

An alternative approach is to look for inconsistencies in the w derived from the growth rate and
that derived from the distance-redshift relation. Given a dark energy parameter, such as the
energy density ΩΛ or equation of state w, we split it into two parameters with one controlling
geometrical distances, and the other controlling the growth of structure. Observational data are
then fitted without requiring the two parameters to be equal. Recently, Wang et al. (2007) applied
this parameter-splitting technique (Simpson & Bridle 2005; Zhang et al. 2005; Zhan et al. 2009)
to the current data sets, and Figure 15.10 shows the main result. It reveals no evidence of a
discrepancy between the two split meta-parameters. The difference is consistent with zero at the
2σ level for the quintessence(Q)-CDM model. The existing data sets already pose tight constraints
on w derived from geometry. However, the constraint is much weaker for w derived from growth,
because currently galaxy data are limited by the uncertainty of the bias factor and WL data are
restricted by both the width and depth of the survey. LSST will open these windows dramatically.

The parameter-splitting technique can also check for internal inconsistency within any one data
set, such as shear tomography, that is sensitive to both geometry and growth. It can be thought of
as a crude way to parametrize the space of these theories. As such, the constraints can be viewed

543



Chapter 15: Cosmological Physics

!0

"
m

−2 0 2 4 6 8

0.2

0.25

0.3

0.35

Figure 15.9: Projected 68% and 95% likelihood contours of the matter fraction Ωm and gravitational slip $0 for
WMAP 5-year data (blue), adding current weak lensing and ISW data (red). Yellow is mock Planck CMB data, and
green adds weak lensing from a 20,000 deg2 survey. Figure from Daniel et al. (2009), with permission.
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Figure 15.10: Joint constraints on w(geom) and w(grow) in a model in which the two EOS parameters are allowed
to be different. The contours show the 68% confidence limits from the marginalized distributions. The thick gray
line shows w(geom) = w(grow). Different contours and curves represent constraints from different combinations of
the current data sets (CMB, SNe, galaxies and WL). The smallest contour and the most narrow curve (black solid
line) represent constraints from all the data. No significant difference is found and deviations are constrained to
w(geom) − w(grow) = 0.37+0.37+1.09

−0.36−0.53 (68% and 95% C.L.). The star-shaped symbol corresponds to the effective
w(geom) and w(grow), which approximately match the expansion history and the growth history, respectively, of a
flat DGP model with our best-fit Ωm. Adapted from Wang et al. (2007).
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Figure 15.11: Projected 68% likelihood contours of Σ, the parameter describing the effective modification to the
lensing potential, and the growth index γ for weak lensing surveys from a full sky survey with median z = 0.9, and
surface densities of sources of 35, 50, and 75 galaxies per arcminute. LSST is likely to achieve a surface density near
the bottom of this range. Errors scale inversely with the square root of the sky fraction. Figure from Amendola
et al. (2008), with permission.

as putting restrictions on modified gravity theories, with the caveat that the precise constraints on
any particular theory must be worked out on a case by case basis.

Finally, we show in Figure 15.11 how accurately LSST could measure evolution of Σ, which de-
scribes the modification to the lensing potential (Equation 15.7). Assuming Σ = 1 + Σ0a, Σ0 may
be determined to an accuracy of a few hundredths (Amendola et al. 2008). One caveat on all
of these conclusions is that WL requires knowledge of the nonlinear regime of galaxy clustering,
and this is reasonably well-understood for GR, but for other models, further theoretical work is
required. This has already started (Schmidt et al. 2008).

15.4 Anisotropic Dark Energy and Other Large-scale
Measurements

Anthony Tyson, Hu Zhan

By providing measurements of WL shear, BAO, and other observables in different directions on
the sky covering ∼ 100◦ scales, LSST will address specific questions related to clustering on the
largest scales. These range from the clustering of dark energy to exotic models that require horizon
scale tests (see also § 13.4 and § 13.7). Because of its wide and deep coverage, the 20,000 deg2

LSST survey of billions of galaxies has the power to test isotropy to percent level precision.

There is compelling evidence that the mean expansion of the Universe is accelerating. At this
time there are no plausible theoretical models for the dark energy. We are far from understanding
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the nature of this phenomenon. In some respects this is similar to the earliest days of the CMB
observations. We should, therefore, examine the consequences of an anisotropic dark energy in
cosmological models and estimate their observability.

While there are even fewer plausible theories of anisotropic dark energy, there are several logical
possibilities that can be checked through direct observation. It is in principle possible to have
anisotropy in an otherwise homogeneous Universe described by a cosmological constant. If dark
energy is something other than a cosmological constant, it will in general have anisotropic stresses
at some level. This is also a generic prediction of modified gravity theories. Because covariance
implies that a time-varying field is equivalently spatially-varying, dynamical dark energy is neces-
sarily inhomogeneous. Inhomogeneities in the surrounding radiation and matter fields can drive
fluctuations in dynamical dark energy. Spatial variations in the expansion rate should accompany
fluctuations in dark energy. Distortions of the expansion rate and luminosity distance may also
arise if the observed cosmic acceleration is due to gravitational effects in a strongly inhomogeneous
Universe.

In some models the small Jeans scale of the effective dark energy forms small wavelength per-
turbations which can be probed via weak lensing (Amendola et al. 2008). In general, it may
be possible to distinguish between cosmological constant, dynamical dark energy, and modified
gravity. Jiménez & Maroto (2007) studied the consequences of a homogeneous dark energy fluid
having a non-vanishing velocity with respect to the matter and radiation large-scale rest frames.
They found that in scaling models, the contributions to the quadrupole can be non-negligible for
a wide range of initial conditions. Anisotropies have been considered as potentially observable
consequences of vector theories of dark energy (Armendáriz-Picón 2004).

15.4.1 Possible Relation to CMB Large Scale Anisotropy

The CMB exhibits less power on large scales than predicted (Spergel et al. 2003). Perhaps this
is a statistical fluke, due to cosmic variance in an ensemble of possible universes. However, we
should also explore alternative explanations. Perturbations whose wavelengths enter the horizon
concurrent with dark energy domination distort the CMB during the late time acceleration. Is
the cosmological principle more fundamental than general relativity? It is worthwhile to obser-
vationally study this assumption of perfect homogeneity on large scales. We know that large
imhomogeneities exist on smaller scales. Large scale CMB anisotropies develop for off-center ob-
servers in a spherically symmetric inhomogeneous universe (Alnes & Amarzguioui 2006; Enqvist
& Mattsson 2007). Koivisto & Mota (2008) investigated cosmologies where the accelerated expan-
sion of the Universe is driven by a field with an anisotropic pressure. In the case of an anisotropic
cosmological constant, they find that in the current data the tightest bounds are set by the CMB
quadrupole.

15.4.2 Matter Inhomogeneities

One might ask if we can tell the difference between anisotropic matter cosmic variance and dark
energy cosmic variance. Depending on the redshift, that could be settled by looking at the galaxy
number count quadrupole, etc. over a cosmological volume. What effects might be present in
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Figure 15.12: Detectable deviation between LSST measurements of dark energy parameter, wp, and error product
as a function of the number of patches. The constraints are derived from the joint BAO and WL (galaxy–galaxy,
galaxy–shear, and shear–shear power spectra) analysis in § 15.1. Note that there is little degradation in sensitivity
as one goes from quadrupole to higher moments if the other marginalized cosmological parameters are shared: a 16
patch survey degrades the error product per patch by less than a factor of two. The red curves labeled “single” are
for independent determination of all parameters for each patch. Estimated LSST systematics are included.

LSST data if there were an anisotropic distribution of matter on Gpc scales (viz. Caldwell &
Stebbins 2008)? Our current framework for cosmology will be violated if the anisotropy is at a
level well above the cosmic variance. If the cosmological principle does not hold, we cannot assume
that physics here applies to other places in the Universe. Hence, there is a logical inconsistency
in predicting observables for a truly anisotropic Universe (i.e., more anisotropic than allowed by
cosmic variance) based on the Friedman-Robertson-Walker (FRW) model. Anisotropic matter
is in some sense worse than anisotropic dark energy, only because we know more about matter
fluctuations and hence their cosmic variance. Our ignorance about the appropriate cosmic variance
for dark energy gives us some room for anisotropy.

15.4.3 Observations Enabled by LSST

Anisotropic dark energy can be probed via distance and growth measurements over the sky with all
the dark energy probes. LSST is particularly suited for testing the anisotropy of dark energy. Its
wide survey area enables one to measure dark energy properties in many patches and to potentially
detect their variations across the sky; its deep imaging not only results in more usable galaxies for
more accurate measurements of the distances and growth function, but also allows one to probe
the differences in the evolution of dark energy properties across the patches.

The results of dark energy anisotropy tests using the joint LSST BAO (galaxy power spectra)
and WL (shear power spectra) analysis are shown in Figure 15.12. See § 15.1 for details of the
calculation such as the anticipated systematics and priors. The only difference from § 15.1 is that

547



Chapter 15: Cosmological Physics

we let each patch of sky have its own w0 and wa in this section. The rest of the parameters are
assumed not to vary from patch to patch and, thus, are shared among the patches.

In Figure 15.12 we find only a small degradation in sensitivity to the dark energy EOS parameters
that are allowed to vary independently in up to ∼ 10 different patches of the LSST survey area, if
the other marginalized cosmological parameters are shared between patches. Each patch achieves
nearly the same precision of measurement of the dark energy parameters as the full 20,000 deg2

survey. For comparison, the red curves labeled “single” are for independent determination of all
parameters for each patch. The single patch σ(wp) line (and the single patch error product) is
what one would get from just doing the LSST survey over that smaller patch area.

In the single patch case, the Fisher matrix (see § B.4.2) is proportional to the area of the survey3,
so that the estimated error on a single parameter scales as square root of the number of patches,
Npat, and the error product wp × wa ∝ Npat. Because w0 and wp consist only a small subset
of many cosmological and nuisance parameters that BAO and WL can constrain, increasing the
degrees of freedom of the dark energy EOS to 2Npat does not inflate individual parameter errors
by a factor of N1/2

pat . Therefore, the “all” results in Figure 15.12 degrades more slowly than the
“single” results.

Adding SNeIa would have little impact in Figure 15.12, just as they do over the whole sky (see
Figure 15.3). A SN-only survey will behave very much like the single patches in Figure 15.12, be-
cause the only shared parameter among all patches on which SNeIa have some marginal constraint
is curvature; in particular, the evolution parameters are not constrained. In other words, the gain
of the “all” results over the “single” results is due to sharing these parameters across the sky.

A separate investigation using the angular power spectrum of SNeIa luminosity by Cooray et al.
(2008) finds that an LSST-like survey of one million SNeIa at z . 1 can limit rms dark energy
fluctuations at the horizon scale down to a fractional energy density of ∼ 10−4. This limit is
much higher than the 1.92× 10−5 horizon-scale matter fluctuations measured from COBE (Bunn
& White 1997), but as we have demonstrated above with the dark energy EOS, one can combine
more LSST probes as well as external data sets to improve the constraints on dark energy density
fluctuations.

15.5 Cosmological Simulations

Salman Habib, Risa H. Wechsler

An enormous amount of science can be extracted from a synoptic survey as deep, wide, and rich
as LSST. In order to maximize the quantity and quality of the science, the underlying theory
must be developed – as far as possible – to a point where analysis and interpretation of the
data are not systematics-limited. In contrast to the analysis of the CMB temperature anisotropy,
where, for the most part, only linear physics need be considered, predictions for LSST observations
and analysis of the data will overwhelmingly involve nonlinear aspects of structure and galaxy
formation. The nonlinear aspects include gravity, hydrodynamics, and a variety of astrophysical
feedback mechanisms. Cosmological numerical simulations thus play a critical role in combining

3CMB observations are reduced to the same area.
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these into a precision theoretical framework. Meeting the demands of LSST requires a numerical
simulation campaign at the cutting edge of present and future computational astrophysics and
cosmology.

15.5.1 The Simulation Context

In the context of a deep, wide survey such as LSST, which is exploring new regimes in parameter
space, there are four general uses for cosmological simulations. The first is an accurate calculation
of the underlying dark matter framework for a given cosmological model. Because dark matter
outweighs baryons by roughly a factor of five, gravity-only N-body simulations provide the bedrock
on which all other techniques rest. The second use is a detailed prediction of the observed galaxy
population and other observables in the survey, including all relevant baryonic effects. Third,
simulation based mock-catalogs provide an essential tool for the planning of the LSST survey
strategy and for testing its technical aspects. The final critical use of simulations is to provide a
framework for interpreting the LSST data in the context of models, both cosmological models and
models of baryonic physics.

These different uses require a wide range of input physics into the simulation. Ideally, we would like
to be able to simulate the full structure formation problem, including galaxy and star formation, in
a box the size of the LSST survey volume. However, it will not be possible now, or in the foreseeable
future, to develop an accurate first principles simulation capability that can address the needs of
all of the observational probes enabled by LSST; the dynamic range is too vast and the underlying
physics too complex. On the largest scales where gravity from dark matter dominates, gravity-only
simulations are sufficient for predictions of structure. However, on scales smaller than a few Mpc,
complex baryonic physics also enters requiring the modeling of (magneto-)hydrodynamic, thermal,
chemical, and radiative processes. The computational challenges are immense, even in the dark
matter only case, and become prohibitive when solving the full baryonic problem.

To overcome the computational hurdle, several strategies exist. To begin with, we will need to
produce a large, LSST-volume simulation of the dark matter distribution at modest resolution
with as many simulation particles as possible. This will provide the backbone of the simulation
analysis. What is required is a collection of robust phenomenological approaches for combining
the observations with simulation results, appropriately tuned for each of the observational probes.
We will refer to these approaches collectively as examples of “self-calibration.” One technique is
to incorporate results from hydrodynamic simulations done over small yet representative volumes
by developing semi-analytic models that can be used in large-volume, gravity-only simulations.
Statistical methods can also be used to add galaxies to the N-body simulation. These should
reproduce the observed distribution of galaxies with as much fidelity as possible based on existing
data, including upcoming stage III experiments such as DES and PanSTARRS as well as the results
from deeper smaller volume surveys from the ground and from space.

A more computationally intensive approach is the use of large-scale hydrodynamical simulations
with sub-grid models developed using smaller runs. As simulation capabilities continue their ex-
plosive growth (supercomputer performance has increased by a factor of 10,000 over the last 15
years), we can expect a major improvement in the sophistication of self-calibration techniques over
what is available now. Indeed, many of the phenomenological modeling ideas currently in use will
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be obsolete by the time the LSST data stream is in full flow. The LSST simulation campaign must
have the flexibility to change as this situation evolves.

Finally, LSST is developing a detailed image simulation pipeline, described in § 3.3, which uses the
properties of galaxies in cosmological simulations as a key input. These simulations are essential
for developing the data reduction, management, and analysis pipelines and also provide critical
input to the various science teams in planning and running their analysis.

It is also important to keep in mind that, because LSST will exist on the same timescale as other
important large scale structure probes (JDEM, eROSITA, SKA), there will be substantial overlap
in the simulation requirements. The power of combining various data sets will significantly lower
the systematics floor and impose additional demands on simulations. For example, the simple dark
energy parametrizations currently in use may have to be abandoned in favor of a non-parametric
approach embedded within the simulation framework. Additionally, an advanced framework of
simulations will be necessary in guiding how we combine the multiple data sets from different
surveys. This will become easier as computer power grows enabling “end-to-end” style modeling.

15.5.2 LSST Simulations I: Main Requirements

The large-scale distribution of matter (on scales greater than several Mpc) is determined primarily
by gravity. Therefore, the first set of simulation desiderata are determined by what is required
of N-body simulations. For LSST, the largest scales of interest cover studies of Baryon Acoustic
Oscillations (BAO), which occur on scales of 150 h−1Mpc. LSST BAO studies will require 0.1%
accuracy for the matter power spectrum to scales k ∼ 0.3 hMpc−1 over a range of redshifts
0.1 < z < 5 (for a recent discussion of BAO simulation errors, see Nishimichi et al. 2008). In the
high redshift range, perturbation theory may suffice, but for z < 1, perturbative results rapidly lose
accuracy in ways that are difficult to predict (Carlson et al. 2009). In any case, the mock catalogs
required to develop BAO analysis as well as to understand the dependence on galaxy properties
can only be carried out with simulations.

Additionally, the cluster-scale halo mass distribution and its dependence on cosmology can be
calibrated with N-body simulations. It is already known to be non-universal in a way that can
influence precision cosmological analyses (Reed et al. 2007; Lukić et al. 2007; Tinker et al. 2008;
Lukić et al. 2009; Bhattacharya et al. 2009). Because significant constraints come from the high end
of the mass function, where the number density drops exponentially, simulation of large volumes
are also needed to more accurately characterize the mass function in this range.

In general, the N-body simulation task for galaxy clustering and cluster counts is targeted at
precision studies of the dark matter halo and subhalo distribution, construction of sufficiently fine-
grained merger trees for improved empirical and semi-analytic modeling of the galaxy distribution,
and running a large number of simulations to understand errors and their covariances. The fun-
damental science requirements are: 1) sufficient mass resolution to resolve dark matter halos and
subhalos hosting the target galaxies, 2) sufficient volume to control sample variance uncertainties,
and 3) enough information to model galaxy bias. For LSST, this translates into simulations with
multi-Gpc box-sizes and particle counts in the 1011−12 range (for mass resolutions of order 109 M�),
all with ∼kpc force resolution. These simulations will probe the scales of superclusters, voids, and
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large-scale velocity fields, and are well-matched to petascale computing resources (Habib et al.
2009).

Full-up simulations of this kind cannot be performed with petascale resources but require going to
the exascale: resolving subhalos in a Hubble volume demands 1013−14 particles, in turn requiring
1024 flop of computation. By 2015, assuming current trends hold, computing performance will
be at the 100 Petaflop level. Therefore, provided that N-body code development keeps pace with
architecture developments, simulations at the scale demanded by LSST will be available by the
time the data makes its appearance.

While such simulations will provide a significant amount of power for understanding the LSST data,
they need additional refinement. In particular, we will need targeted simulations which investigate
higher resolution to calibrate the impact of the smaller scale clustering and simulations including
gas physics to understand the impact of baryons on the dark matter distribution. Finally, we will
need models for putting LSST observables into the N-body simulations. These models can take the
form of direct hydrodynamical simulations of small scales, semi-analytic modeling of high-resolution
merger trees that incorporate sub-grid physics calibrated to the higher resolution simulations, and
empirically constrained statistical models for incorporating the observational galaxy distribution
into the simulation.

Simulations with smaller box sizes (linear scales of Gpc and less) are needed to deal with further
challenges posed by LSST weak lensing observations, requiring absolute error control at the sub-
percent/percent level up to scales of k ∼ 10 hMpc−1 (Huterer & Takada 2005). Currently, the best
demonstrated N-body error control is at the 1% level out to k ∼ 1 hMpc−1 (Heitmann et al. 2008),
and this can be extended and improved to k ∼ 10 hMpc−1 with a petascale computing campaign.

Recent studies have shown that the evolution of the baryonic component of the Universe imprints
itself even on the largest scales, including a roughly 5% impact on the cluster mass function
and the BAO peak (Stanek et al. 2009). This is also true on larger scales than may have been
expected for the weak lensing power spectrum; baryonic effects become important beyond scales of
k ∼ 1 hMpc−1 (White 2004; Zhan & Knox 2004; Jing et al. 2006; Rudd et al. 2008). This creates a
systematic error present in any attempt to extract cosmological parameters calibrated using N-body
only simulations. Unfortunately, the computational power necessary for even a rough treatment of
the baryons on the LSST scales is not present. It will, therefore, be necessary to complement our
above large volume simulations with a series of much smaller, higher-resolution simulations that
include accurate treatment of the gas physics. Although a full treatment will require AMR and
SPH simulations with absolute error controls and physics treatments beyond the current state of
the art, there are encouraging signs that self-calibration approaches can be used successfully. In
particular, Zentner et al. (2008, see also § 14.5.4) showed that the impact of baryonic physics on
the weak lensing power spectrum can be measured from hydrodynamic simulations and added as
a correction to dark matter only simulations with high accuracy.

Similar self-calibration approaches can be applied to modeling cluster counts, which for LSST will
be in the hundreds of thousands. The critical requirement for simulations is to properly model
the form of various mass–observable relations; the parameters specifying this form can them be
self-calibrated with the data itself (e.g., Rozo et al. 2009). Still, it is essential to determine the
sensitivity of these relations to baryonic treatment and the full range cosmological parameter space.
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Although this is a very large computational task, petascale capabilities are sufficient to accomplish
it within the next few years.

The associated simulations are an order of magnitude more expensive than the underlying pure N-
body runs, and extensive numerical exploration is required to understand the effects of parametric
variations in sub-grid models. Additionally, it must be kept in mind that modeling of various
sources of systematic error, such as intrinsic galaxy alignments (§ 14.5.3) and the photometric
redshift distribution, is actually a bigger concern for weak lensing measurements, and will require
substantial observational input.

Finally, resolving the smallest length scales using a series of nested boxes will be necessary for
investigating the physics and dark matter and baryonic structure of individual galaxies and galaxy
clusters. These simulations will be useful for providing an additional source of sub-grid inputs into
the large-scale codes and will also be essential for weak and strong lensing studies of cluster masses
especially the influence of substructure. Detailed simulations for investigations of the properties
of dark matter-dominated dwarf satellite galaxies of the Milky Way are needed, incorporating
modifications of CDM (e.g., warm and interacting dark matter). Detecting these galaxies is a
prime target for LSST as described in Chapters 7 and 9.

Given the computational challenges of hydrodynamical simulations, as well as the fact that they
still involve significant unresolved sub-grid physics that impacts the observations, it is essential
to develop in parallel empirical and semi-analytic models for connecting the well-modeled dark
matter distribution with the observed galaxy distribution. Current approaches range from those
which require resolved substructure (Conroy et al. 2006), to halo occupation approaches (Berlind
& Weinberg 2002) that only require resolving central halos, to algorithms which are designed
specifically for modeling larger volumes with poor resolution (ADDGALS; Wechsler et al. 2009).
Generically, these models use available data to constrain a statistical relation between the observed
galaxy and properties of the dark matter distributions. Such models let us build mock galaxy
catalogs that are designed to reproduce particular observed galaxy properties, such as clustering,
bias, and mass-richness relations. These models can be run on top of the lightcone outputs of
N-body simulations to create mock catalogs that will help us bridge this gap between dark matter
simulations and observable properties. Indeed, with the level of precision that modern cosmology
has reached, understanding of the dark matter-observable relation will likely be a dominant source
of error when extracting cosmological information from LSST data.

The requirements of such mock catalogs for LSST are quite stringent. In order to test the full
analysis pipeline, these catalogs should produce galaxies with realistic photometric and morpho-
logical properties down to r = 28 and cover as much volume as possible, and must be produced
for a range of cosmological models (described more fully in the following section). Additionally,
mocks should include the correlation between galaxy properties and, for example, AGN properties
and supernovae, and should include the full range of source light curves is needed to model the
types of variability that will be seen by LSST.

15.5.3 LSST Simulations II: New Directions

Aside from investigating the role of dark energy as a background phenomenon, LSST observations
can put constraints on dark energy anisotropy and clustering, enable tests of gravity on cosmological
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and astrophysical scales, investigate the primordial density fluctuation power spectrum including
the existence of features and running of the spectral index, and study primordial non-Gaussianities
(§ 13.4.2). A suite of simulations must be developed to address all of these questions. Most of the
simulation capability would be based around that discussed above, but several new directions will
be explored.

Fully self-consistent simulations for dynamical dark energy models, with initial conditions set
by transfer functions incorporating dark energy fluctuations, will be necessary to make realistic
predictions for LSST observations. Because dark energy clustering occurs on very large scales, the
basic simulation requirements are not too different from those for galaxy clustering. The added
wrinkle will be the need for a PDE-solver for the quintessence field, but the dynamic range for this
is limited and will not be a significant overhead.

Investigations of the primordial power spectrum essentially involve running the standard simula-
tions but with a modified initial condition. Although large scales may be in the linear or quasi-linear
regime, simulations are important in understanding systematics issues, such as the role of scale-
dependent bias and modeling of galaxy evolution. Explorations outside the simple assumptions
underlying current approaches (adiabatic Gaussian fluctuations, power-law primordial spectra) are
essential to establish the robustness of inferences made from the observations, especially since – the
inflationary paradigm notwithstanding – there is no firmly established theory of initial conditions.
An example of this sort of exploration is scale-dependent halo bias induced by non-Gaussianity
(Dalal et al. 2008; Matarrese & Verde 2008, see also § 13.4.2) in the initial conditions. Primordial
non-Gaussianity has been traditionally parametrized by the parameter, fNL, which LSST can con-
strain extremely tightly (to fNL ∼ 1, Carbone et al. 2008), however, this is only a particular case,
and other aspects of non-Gaussianity should be investigated (for example, by using the Edgeworth
expansion to set up initial conditions).

Simulations aiming to study the effects of modified gravity are based either on the use of specific
models or on the so-called parametrized post-Friedmann approach, which uses one post-Newtonian
parameter, γ, to signify departures from general relativity (e.g., Bertschinger & Zukin 2008).
Simulations such as Stabenau & Jain (2006), Laszlo & Bean (2008), Oyaizu (2008), and others
that include long-range dark matter interactions (Nusser et al. 2005), will be useful foils for the
main line of the numerical effort, important to clarify the precise nature of LSST observational
results (in terms of acceptance or rejection of alternative models).

15.5.4 Calibration Frameworks

The simulation requirements for next-generation cosmological surveys such as LSST are very de-
manding and cover not only scanning over cosmological and physical modeling parameters, but
in the case of end-to-end modeling, a slew of observational and instrumental variables. The final
number of parameters can range from tens to thousands, depending on the particular application.
While post-processing results from expensive simulations can sometimes be used to incorporate
more parameters, this approach is far from being universal. The basic difficulty that must be faced
is that the number of complex simulations that can be performed will always be finite – based
on this finite set of results, one has to effectively interpolate across a high-dimensional space of
parameters.
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The most direct way to approach this problem is through a brute-force comparison of simulated
output with the most recent observational data. A number of upcoming surveys are expected to be
in the final stages of taking data by the time LSST comes online in 2015. In particular, the Dark
Energy Survey (DES) and Pan-STARRS are expected to map out thousands of square degrees
down to 24th magnitude, roughly the depth of a single LSST exposure.

Incorporating observational information such as color distributions and clustering from these sur-
veys into, for example, galaxy halo occupation distribution (HOD) modeling, as well as comparing
with predictions from hydro simulations and semi-analytic modeling, will be necessary to begin
immediate analysis of the LSST data as it becomes available. In particular, this will allow us to
create a stronger understanding of our mass-observable relations, and, with the help of a realistic
transfer function for creating mock sky images, can help in getting an initial handle on system-
atics. However, these comparisons will only help to understand how to accurately represent the
galaxy distribution of a given (simulated) cosmology and set of model parameters, making it very
difficult to scan across a wide range of cosmological models, not all of which will have been directly
simulated.

Recent advances in applications of Bayesian and other statistical techniques to modeling simulation
results has resulted in the development of the cosmic calibration framework (Heitmann et al. 2006;
Habib et al. 2007; Schneider et al. 2008), an approach targeted precisely to the problem identified
above. Given a smooth enough response surface in the high-dimensional parameter space, this
methodology has been shown to give excellent results, in particular, percent level predictions for
the nonlinear matter power spectrum (Heitmann et al. 2009). The procedure consists of four
interlocking steps: 1) defining the simulation design, which determines at what parameter settings
to generate the training sets, 2) generation of the emulator – using PCA-based Gaussian process
models – which replaces the simulator as a predictor of results away from the points that were used
to generate the training set, 3) an uncertainty and sensitivity analysis associated with the emulator,
and 4) the (self-) calibration against data via MCMC methods to determine parameter constraints.
The calibration methodology can be adapted to multiple tasks within the LSST science campaign
and, significantly, can be used similarly for cosmological parameters, the parameters specifying the
empirical or semi-analytic models, as well as uncertainties in the instrumental response. In each
case unknown parameters can be determined in the final MCMC calibration against observational
results.
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A Assumed Cosmology

Hu Zhan

One of the most important scientific goals of the LSST is to refine and rigorously test our current
“standard model” of cosmology. In predictions of LSST’s performance, however, we must agree on
a fiducial cosmology, which we describe here. This book will describe our predictions for LSST’s
ability to tighten our constraints on these parameters, test for consistency among a variety of
cosmological probes, and test some of the basic assumptions of the model, from the Cosmological
Principle, to the clustering and isotropy of dark energy.

Our fiducial model is a cold dark matter (CDM) universe with a large fraction of its energy
density in the form of dark energy that has an equation of state w = p/ρ (wCDM). This model is
characterized by the 11 parameters listed in Table A.1, which are taken from the WMAP five-year
data analysis (Dunkley et al. 2009). We use the WMAP-only results to avoid dealing with the
complex correlations between LSST probes and other probes incorporated in Dunkley et al. (2009).
Slight changes to the fiducial model do not affect our assessment of the LSST performance. Since
the cosmic microwave background (CMB) alone cannot constrain all 11 parameters, we center the
fiducial model on the concordance ΛCDM model (i.e., w0 = −1, wa = 0, and Ωk = 0) and allow
all the 11 parameters to float in the forecasts.

We adopt a phenomenological parametrization for the dark energy equation of state used by the
report of the Dark Energy Task Force (Albrecht et al. 2006): w(a) = w0 + wa(1 − a), where a is
the expansion factor. The rest of the parameters are chosen to be convenient for techniques such
as baryon acoustic oscillations (BAO) and weak lensing and for combining LSST constraints with
CMB results. For example, the lensing potential scales with the physical matter density ωm, not
by the matter fraction Ωm alone (ωm = Ωmh

2 and h is the reduced Hubble constant). Likewise,
the BAO features are determined by ωm and the physical baryon density ωb = Ωbh

2, where Ωb is
the baryon fraction.

In addition to Table A.1, we also make standard assumptions about other parameters and processes,
e.g., adiabatic initial condition, standard recombination history, three effective number of neutrino
species, etc. We fix the neutrino mass to zero in all but § 15.2 where we estimate the upper limit
that can be placed by LSST shear and galaxy clustering data. The actual values of the neutrino
masses have little impact on most forecasts, as long as they are held fixed.
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Table A.1: Cosmological parameters from WMAP five-year results†

Symbol Value Remarks

w0 −1 dark energy equation of state at z = 0

wa 0 rate-of-change of the dark energy EOS as in w(a) = w0 + wa(1− a)

ωm 0.133 physical matter density ωm = Ωmh
2, Ωm = 0.258

ωb 0.0227 physical baryon density ωb = Ωbh
2, Ωb = 0.0441

θs 0.596◦ angular size of the sound horizon at the last scattering surface

Ωk 0 curvature parameter

τ 0.087 optical depth to scattering by electrons in the reionized

intergalactic medium

Yp 0.24 primordial helium mass fraction

ns 0.963 spectral index of the primordial scalar perturbation power spectrum

αs 0 running of the primordial scalar perturbation power spectrum

∆2
R 2.13× 10−9 normalization of the primordial curvature power spectrum at

k∗ = 0.05 Mpc−1 (σ8 = 0.796 or ∆2
R = 2.41× 10−9 at k∗ = 0.002 Mpc−1 )

† The reduced Hubble constant h = 0.719 and the present equivalent matter fraction of dark energy
ΩX = 0.742 are implicit in this parametrization, meaning that either one of them can replace θs or any
parameter that affects θs.
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B Analysis Methods

Phil Marshall, Licia Verde, Hu Zhan

This chapter describes the statistical analysis methods that are used in previous chapters either to
forecast LSST performance or as suggested to analyze LSST data. We start with an introductory
review before moving on to some practical examples.

B.1 Basic Parameter Estimation

Very readable introductions to probabilistic data analysis are given by Sivia (1996), MacKay
(2003) and Jaynes (2003); an introduction to the basics is given in this section. A single piece
of experimental data is often presented in the form x = x0 ± σ0, with x0 being the result of
the measurement and σ0 the estimate of its uncertainty. This is shorthand for something like the
statement “I believe that the quantity I am trying to measure, x, is most likely from my experiments
to be x0, but I could also believe that it was actually less than or greater than this by roughly
σ0.” That is, the relation x = x0 ± σ0 is a compressed version of the probability distribution (or
probability density function, PDF) Pr (x0|x,H), to be read as the probability of getting x0 given
assumptions about x and H. When written as a function of the model parameters, this PDF is
referred to as the likelihood. Since our observed data come in probability distribution form, any
conclusions we draw from them will necessarily be probabilistic in nature as well.

Traditionally there are two interpretations of probability: “Frequentist” and “Bayesian.” For
frequentists, probabilities are just frequencies of occurrence: P = n/N where n denotes the number
of successes and N the total number of trials. Probability is then defined as the limit for the number
of independent trials going to infinity. In the example above if one were to repeat the experiment
an infinite number of times, then x will fall in the range [x0 − σ0, x0 + σ0], say, 68% of the time.
Bayesians instead interpret probability as a degree of belief in a hypothesis – a quantified version
of the original statement above.

In cosmology, statistical analysis tends to be carried out in the Bayesian framework. It is easy to
understand why: cosmic variance makes cosmologists only too aware of the limited information
available to them. Only one realization of the CMB anisotropy and the large scale structure is
accessible to our telescopes, and so while this is not a technical barrier to our happily simulating
large numbers of fictitious universes in order to either compute or interpret our uncertainties, it
is perhaps something of a psychological one, promoting the acceptance of the Bayesian notion of
probability.

Bayesian cosmologists, seeking a steady point for their lever, assume that the observable universe is
just one particular realization of a true underlying stochastic model of the Universe: the cosmolog-
ical parameters of this model can be inferred from this one realization via the rules of probability.
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Only if we could average all possible (unobservable) realizations of the underlying model could we
recover the true values of the parameters with certainty – but since we can only observe one of the
infinite possible realizations of it, we have to settle for probability distributions for the parameters
of the underlying model instead.

This mental approach has the distinct advantage that it keeps cosmologists honest about the
assumptions they are making, not only about the underlying world model, but also every other
aspect of the data set they are attempting to model: systematic errors should, in principle, be
already at the forefront of her mind! The catch is that to interpret probability as a degree of
belief in an hypothesis, Bayesian cosmologists have to assume a probability distribution for the
hypothesis itself. This step can be somewhat arbitrary and thus subjective: this is the age-old
point of friction between frequentists and Bayesians. In this appendix we will use the Bayesian
framework, in keeping with the tradition of cosmology. We will nevertheless try to point out where
the “subjectivity” of being Bayesian is introduced (and where it is not).

After this aside, let us return to practicalities. The precise functional form of the likelihood is
always unknown, and so an assumption must be made about it before any interpretation of the
data can occur. This assumption forms part of a model for the data, which we denote by H,
whilst x is a variable parameter of this model. More often than not, the physical nature of the
object being studied is best understood in terms of some different parameter, θ, rather than x: in
this case the model still allows the datum x0 to be predicted, and describes how its probability
is distributed through Pr (x0|θ,H). If more than one datum is available, and they came from
independent attempted measurements of x, we can write the joint likelihood as

Pr (x0, x1, x2, . . . |θ,H) = Pr (x0|θ,H)Pr (x1|θ,H)Pr (x2|θ,H) . . . , (B.1)

the product rule for combining independent probabilities. This makes clearer the distinction be-
tween the parameter θ and the data (which can be conveniently packaged into the vector d having
components xi). Indeed, a more complicated model for the data would make use of more than
one parameter when predicting the data; these can be described by the parameter vector θ. The
generalization of Equation B.1 to Nd independent data sets, {dj}, is then:

Pr (d|θ,H) =
Nd∏
j=1

Pr (dj |θ,H). (B.2)

Within a given model then, the likelihood Pr (d|θ,H) can be calculated for any values of the model
parameters θ. However, as outlined above, cosmologists want statistical inferences, i.e., we want
to learn more about our model and its parameters from the data, by calculating the posterior
distribution Pr (θ|d,H). This distribution contains all the information about the model supplied
by the data, as well as all the information we had about the model other than that provided by
the data: this can be seen by applying the product rule of conditional probability to give Bayes’
theorem,

Pr (θ|d,H) =
Pr (d|θ,H) Pr (θ|H)

Pr (d|H)
. (B.3)

The prior Pr (θ|H) encodes the additional information (this is where the subjectivity of the
Bayesian approach comes in), and is a PDF normalized over the parameter space. The likeli-
hood is also a frequentist quantity (without dependence on the prior) while the posterior is a
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Bayesian construct. In practical applications of Bayesian parameter inference it is good practice
therefore to check how much the reported result depend on the choice of prior: reliable results de-
pend very weakly on the prior chosen. This is in fact a form of model comparison: for Bayesians,
a complete data model consists of a parameter set and the prior PDF for those parameters: some
priors are more appropriate than others. We discuss quantitative model comparison below: in this
context it provides a way of recovering some objectivity in Bayesian analysis.

B.2 Assigning and Interpreting PDFs

As Equation B.3 shows, computing the probability distribution for a parameter (and hence mea-
suring it) necessarily involves the assignment of a prior PDF for that parameter. There are two
types of prior we can assign:

• Uninformative priors, such as uniform distributions in the parameter or its logarithm
(the Jeffreys prior) are often assumed. Sometimes we genuinely know very little, and so
minimizing the average information content of a prior PDF (or maximizing its entropy) makes
sense. In other situations we do know something about a model parameter, but choose to
assign an uninformative prior in order to investigate cleanly the information content of the
data. Sometimes the reason given is to “give an unbiased result.” This makes less sense,
given that Bayesian inferences are biased by design – biased towards what is already known
about the system.

• Informative priors: it is very rare to know nothing about a model and its parameters. An
experiment has usually been carried out before, with different data! The best kind of prior
PDF is the posterior PDF of a previous experiment – this is exactly equivalent to combining
data sets in a joint analysis (Equation B.2 above).

Given suitably assigned priors and likelihoods then, the posterior distribution gives the probability
of the parameter vector lying between θ and (θ + dθ). This is the answer to the problem, the
complete inference within the framework of the model. However, we typically need to present some
compressed version of the posterior PDF: what should we do?

The probability distribution for a single parameter θN is given by marginalization over the other
parameters,

Pr (θN |d,H) =
∫

Pr (θ|d,H) dN−1θ. (B.4)

This is the addition rule for probabilities, extended to the continuous variable case1. This sin-
gle parameter, one-dimensional marginalized posterior is most useful when the parameter is the
only one of interest. In other cases we need to represent the posterior PDF and the parameter
constraints that it describes in higher dimensions – although beyond two dimensions the posterior
PDF becomes very difficult to plot.

The one-dimensional marginalized posterior PDFs can be further compressed into their means,
or medians, or confidence intervals containing some fraction of the total probability – confidence

1Sometimes Equation B.4 is used with the posterior Pr (θ|d, H) substituted by the likelihood. Even in this case a
Bayesian step has been taken: a uniform prior is “hidden” in the parameter space “measure” dN−1θ.
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intervals need to be defined carefully as the integrals can be performed a number of different ways.
However, note that the set of one-dimensional marginalized posterior means (or medians, etc.)
need not itself represent a model that is a good fit to the data. The “best-fit” point is the position
in parameter space where the likelihood function has a global maximum. This point is of most
interest when the prior PDF is uninformative: in the case of uniform prior PDFs on all parameters,
the peak of the likelihood coincides with the peak of the posterior PDF, but in general it does
not. Moreover, the maximum likelihood model is necessarily the model most affected by the noise
in the data – if any model “over-fits” the data, it is that one! Graphical displays of marginalized
posterior PDFs remain the most complete way to present inferences; propagating the full posterior
PDF provides the most robust estimates of individual parameters.

One class of parameters that are invariably marginalized over in the final analysis are the so-called
nuisance parameters. The model H is a model for the data, not just the physical system of interest:
often there are aspects of the experimental setup that are poorly understood, and so best included
in the model as functions with free parameters with estimated prior PDFs. This procedure allows
the uncertainty to be propagated into the posterior PDF for the interesting parameters. Examples
of nuisance parameters might include: calibration factors, unknown noise or background levels,
point spread function widths, window function shapes, supernova dust extinctions, weak lensing
mean source redshifts, and so on. If a systematic error in an experiment is identified, parametrized
and then that nuisance parameter marginalized over, then it can be said to have been translated
into a statistical error (seen as a posterior PDF width): a not unreasonable goal is to translate all
systematic errors into statistical ones.

B.3 Model Selection

While the goal of parameter estimation is to determine the posterior PDF for a model’s parame-
ters, perhaps characterized simply by the most probable or best-fit values and their errors, model
selection seeks to distinguish between different models, which in general will have different sets of
parameters. Simplest is the case of nested models, where the more complicated model has addi-
tional parameters, in addition to those in the simpler model. The simpler model may be interpreted
as a particular case for the more complex model, where the additional parameters are kept fixed
at some fiducial values. The additional parameters may be an indication of new physics, thus
the question one may ask is: “would the experiment provide data with enough statistical power
to require additional parameters and therefore to signal the presence of new physics if the new
physics is actually the true underlying model?” Examples of this type of question are: “do the
observations require a modification to general relativity as well as a universe dominated by dark
energy?”(§ 15.3), or, “do the observations require a new species of neutrino?” (§ 15.2). However,
completely disparate models, with entirely different parameter sets can also be compared using
the Evidence ratio. In this case, in is even more important to assign realistic and meaningful prior
PDFs to all parameters.

These questions may be answered in a Bayesian context by considering the Bayesian Evidence
ratio, or Bayes factor, B:

B =
Pr (d|H1)
Pr (d|H2)

, (B.5)
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where H1 and H2 represent the two models being compared. The Bayes factor is related to the
perhaps more desirable posterior ratio

Pr (H1|d)
Pr (H2|d)

=
Pr (d|H1)
Pr (d|H2)

Pr (H1)
Pr (H2)

. (B.6)

by the ratio of model prior probabilities. The latter is not, in general straightforward to assign
with differences of opinion between analysts common. However, the Bayes factor itself can be
calculated objectively once H1 and H2 have been defined, and so is the more useful quantity to
present.

If there is no reason to prefer one hypothesis over another other than that provided by the data,
the ratio of the probabilities of each of the two models being true is just given by the ratio of
evidences. Another way of interpreting a value of B greater than unity is as follows: if models
H1 and H2 are still to be presented as equally probable after the experiment has been performed,
then proponents of the lower-evidence model H2 must be willing to offer odds of B to one against
H1. In practice, the Bayesian Evidence ratio can be used simply to say that “the probability of
getting the data would be B times higher if model H2 were true than if H2 were.” Indeed, Jeffreys
(1961) proposed that 1 < lnB < 2.5 be considered as “substantial” evidence in favor of a model,
2.5 < lnB < 5 as “strong,” and lnB > 5 as “decisive.” Other authors have introduced different
terminology (e.g., Trotta 2007a).

The evidence Pr (d|H) is the normalization of the posterior PDF for the parameters, and so is
given by integrating the product of the likelihood and the prior over all N parameters:

Pr (d|H) =
∫

Pr (d|θ,H) Pr (θ|H) dNθ. (B.7)

There is ample literature on applications of Bayesian Evidence ratios in cosmology (e.g. Jaffe 1996;
Hobson et al. 2002; Saini et al. 2004; Liddle et al. 2006; Marshall et al. 2006; Parkinson et al. 2006;
Mukherjee et al. 2006a; Pahud et al. 2006; Szyd lowski & God lowski 2006b,a; Trotta 2007b; Pahud
et al. 2007). The evidence calculation typically involves computationally expensive integration
Skilling (2004); Trotta (2007a); Beltrán et al. (2005); Mukherjee et al. (2006a,b); Parkinson et al.
(2006); however, it can often be approximated just as the model parameter posterior PDF can. For
example, Heavens et al. (2007) shows how, by making simplifying assumptions in the same spirit
of Fisher’s analysis (Fisher 1935), one can compute the expected evidence for a given experiment,
in advance of taking any data, and forecast the extent to which an experiment may be able to
distinguish between different models. We implement this in § 15.2 and § 15.3. In § 15.2 we consider
the issue of deviations from the standard number of three neutrino species. The simplest model
has three neutrino species, but effectively this number can be changed by the existence of a light
particle that does not couple to electrons, ions or photons, or by the decay of dark matter particles,
or indeed any additional relativistic particle. Given the observables and errors achievable from a
survey with given specifications, we use the evidence in order to address the issue of how much
different from the standard value the number of neutrino species should be such that the alternative
model should be favored over the reference model.

In § 15.3 we also employ the Bayesian evidence: this time the reference model is a cold dark matter
+ dark energy model, where gravity is described by General Relativity (GR). In the alternative
model, GR is modified so that the growth of cosmological structure is different. Again, given the

563



Appendix B: Analysis methods

observables and errors achievable from a survey with given specifications, we use the evidence to
quantify how different from the GR prediction the growth of structure would have to be such that
the alternative model should be preferred.

B.4 PDF Characterization

The conceptually most straightforward way to carry out parameter inference (and model selec-
tion) is to tabulate the posterior PDF Pr (θ|d,H) on a suitable grid, and normalize it via simple
numerical integration. This approach is unlikely to be practical unless the number of parame-
ters is very small and the PDF is very smooth. The number of function evaluations required
increases exponentially with the dimensionality of the parameter space; moreover, the following
marginalization integrals will all be correspondingly time-consuming. In this section we consider
two more convenient ways to characterize the posterior PDF — the multivariate Gaussian (or
Laplace) approximation, and Markov Chain Monte Carlo sampling.

B.4.1 The Laplace Approximation

By the central limit theorem, the product of a set of convex functions tends to the Gaussian
functional form in the limit of large set size (Jaynes 2003); the posterior probability distribution
of Equation B.3 often fits this bill, suggesting that the Gaussian distribution is likely to be a good
approximation to the posterior density. Approximating probability distributions with Gaussians
is often referred to as the Laplace approximation (see e.g. Sivia 1996; MacKay 2003).

In one dimension, a suitable Gaussian can be found by Taylor expansion about the peak position
θ0 of the logarithm of the posterior PDF P (θ) (where the conditioning on the data and the model
have been dropped for clarity):

logP (θ) ≈ logP (θ0) +
1
2

(θ − θ0)2
d2P

dθ2

∣∣∣∣
θ0

. (B.8)

Exponentiating this expression gives the Gaussian approximation to the function,

g(θ) ≈ P (θ0) exp
[
−(θ − θ0)2

2σ2

]
. (B.9)

The width σ of this Gaussian satisfies the following relation:

d2 logP
dθ2

∣∣∣∣
θ0

= − 1
σ2
. (B.10)

The extension of this procedure to multivariate distributions is straightforward: instead of a single
variance σ2, an N ×N covariance matrix C is required, such that the posterior approximation is

g(θ) = P (θ0) exp
[
−1

2
(θ − θ0)TC−1(θ − θ0)

]
, (B.11)
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and the covariance matrix has components

(
C−1

)
ij

= −∂
2 logP
∂θi∂θj

∣∣∣∣
θ0

. (B.12)

(This matrix is very unlikely to be diagonal – correlations, or degeneracies, between parameters
are encoded in its off-diagonal elements.) The problem is now reduced to finding (numerically)
the peak of the log-posterior, and its second derivatives at that point. When the data quality is
good, one may expect the individual datum likelihoods to be already quite convex, giving a very
peaky unimodal posterior: in this case the Gaussian approximation is likely to be both accurate,
and more quickly and easily located. More commonly, techniques such as simulated annealing may
be necessary when finding the maximum of complex functions of many parameters; in this case a
Gaussian may not be such a good approximation anyway.

B.4.2 Fisher Matrices

The Fisher information matrix (Fisher 1935) is widely used for forecasting survey performance
and for identifying dominant systematic effects (see e.g., Albrecht et al. 2009). The Fisher matrix
formalism is very closely related to the Laplace approximation to the parameter posterior described
above. The discussion that follows may seem unconventional to those more familiar with its
frequentist origins and presentation: our aim is to show how the formalism has been adapted to
modern Bayesian cosmology.

The Fisher matrix was originally defined to be

Fαβ = −
〈
∂2 lnP (x |q)
∂qα∂qβ

〉
, (B.13)

where x is a data vector, q is the vector of model parameters, and 〈. . .〉 denotes an ensemble
average. If the prior PDFs are non-uniform, we must replace the likelihood P (x |q) by the posterior
P (q |x ). In any case, we recognize the Laplace approximation and identify (by comparison with
Equation B.12) the ensemble average covariance matrix of the inferred parameters as F−1.

This estimate of the forecast parameter uncertainties really corresponds to the best case scenario,
as dictated by the Cramer-Rao theorem. More specifically, the estimated error of the parameter
qα is σ(qα) ≥ (Fαα)−1/2 if all other parameters are known precisely, or σ(qα) ≥ [(F−1)αα]1/2 if all
the parameters are estimated from the data.

Cosmological applications of the Fisher matrix were introduced by Jungman et al. (1996); Vogeley
& Szalay (1996); Tegmark et al. (1997); Tegmark (1997). The key is to identify the correct
likelihood function P (x |q) (which is anyway crucial for all inference techniques). However, the
Fisher matrix analysis has a further limitation due to the Gaussian approximation of P (q |x ) with
respect to q : the likelihood, priors and indeed choice of parametrization need to be such that
this approximation is a good one. Usual practice is to approximate the likelihood function as
Gaussian, and assert either Gaussian or uniform priors (both of which guarantee the Gaussianity
of the posterior PDF).
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If we approximate the likelihood function by a Gaussian distribution then,

P (x |q) =
1

(2π)N/2 det[C (q)]
exp

{
[x − x̄ (q)]T

C−1(q)
2

[x − x̄ (q)]
}
, (B.14)

where N is the dimension of the observables x , x̄ (q) is the ensemble average of x , C (q) =
〈(x − x̄ )(x − x̄ )T〉 is the covariance of x . The Fisher matrix is then (Tegmark et al. 1997)

Fαβ =
1
2

Tr
(
C−1 ∂C

∂qα
C−1∂C

∂qβ

)
+
∂x̄

∂qα
C−1 ∂x̄

∂qβ
, (B.15)

where we have dropped the variables q in C and x̄ for clarity. To avoid confusion, we note that
C is the covariance matrix of the data x , whereas F−1 is the covariance matrix of the parameters
q .

In the Gaussian approximation, marginalization, and moment-calculating integrals are analytic.
Independent Fisher matrices are additive; a Gaussian prior on qα, σP(qα), can be introduced via
F new

αα = Fαα + σ−2
P (qα). A Fisher matrix of the parameters q can be projected onto a new set of

parameters p via

F new
µν =

∑
α,β

∂qα
∂pµ

Fαβ
∂qβ
∂pν

. (B.16)

Fixing a parameter is equivalent to striking out its corresponding row and column in the Fisher
matrix. To obtain a new Fisher matrix after marginalizing over a parameter, one can strike out
the parameter’s corresponding row and column in the original covariance matrix (i.e., the inverse
of the original Fisher matrix) and then invert the resulting covariance matrix2.

B.4.3 Examples

At this point, we give two worked examples from observational cosmology, describing the data
model and Fisher matrix forecasts of parameter uncertainties.

Example 1: Type Ia Supernovae
For SNe, the observables are their peak magnitudes in a certain band

mi = m̄(q , zi) + ni, (B.17)

where the subscript i labels each SN, m̄ is the mean value of the SN peak magnitude at redshift
zi, the parameters q include both cosmological and nuisance parameters, and ni represents the
observational noise and intrinsic scatter of the peak magnitude. The mean peak magnitude is given
by

m̄i = M + 5 log [DL(w0, wa,Ωm,Ωk, h, . . . , z)] + evolution terms + const, (B.18)

where M3 is the mean absolute peak magnitude at z = 0, DL is the luminosity distance, and the
evolution terms account for a possible drift of the mean absolute peak magnitude with time. In
a number of forecasts, the evolution terms are simply model with a quadratic function az + bz2

(e.g., Albrecht et al. 2006; Knox et al. 2006; Zhan et al. 2008).
2For a better numerical treatment, see Albrecht et al. (2009).
3M is degenerate with the Hubble constant.

566


