A Prototype Wavefront Sensing Pipeline for the LSST
T.J. Rodigas (U of Virginia), C.F. Claver (NOAO), K. Mighell (NOAO), B. Kuhn (WPKuHn LLC), M. Lang (WPKuHn LLC) and the LSST Collaboration

The Large Synoptic Survey Telescope (LSST) is a planned 8.4 meter fast, wide-field telescope. Its -10 square-degree field of view will allow the night sky to be entirely surveyed every four nights. The large structure of the telescope, combined with its fast operating scheme, will require an automated active optics system that can correct for optical distortions to produce sharp, optimal images. The active optics system (AOS) employs wavefront curvature sensing (WCS) located at the four corners of the inscribed square within the 3.5 degree field-of-view. The measured wavefront errors are used to determine the displacements and surface corrections in the AOS. To save operating time, we had to minimize human interaction in the WPS process by making the WCS software as automated as possible. We designed and coded this automated WCS software in a Matlab graphical user interface (GUI), which takes in input data (intra/extra-focal images), automatically cleans the data (bias-subtraction, trimming, and removing bad columns), and automatically converts the image data into data that can be passed to the WCS code. The WCS code uses a Fourier based algorithm to solve the intensity transport equation and estimate the system wavefront errors. These errors can then be corrected for by adjusting the physical components of the telescope’s optical system.

Optical System Definition
Before running the pipeline the basic physical parameters of the optical system need to be defined in consistent units. These include:

- Reference aperture diameter
- Effective focal length
- Offset of the intra/extra focal image planes
- Aperture geometry, including vignetting and obstructions
- Sensor pixel size and sub-image array size

The aperture geometry is specified on an mask list. Each mask list element is a group of 4 numbers specifying the center of a circle (XY), a scaling factor relative to the reference aperture, and a Boolean operator to indicate whether the circle is inclusive (1) or exclusive (0). For example, the figure above is created from the following mask list:

M = [0.1 1 -0.25 0.25 0.25*sqrt(2) 0; 0.25 -0.25 0.25*sqrt(2) 0]

Image Preprocessing

The image processing module provides for basic reduction for the removal of the instrumental signature, including bias over scan subtraction, trimming, image bias subtraction, flat-fielding, and removal of bad columns. The processed image contains out-of-focus, donut-shaped sources, which are then extracted for the wavefront analysis. The FITS image format is used throughout the processing and analysis steps.

Source location/extraction

Sources are identified by cross-correlating the original processed image with a template of the out of focus image. The template is derived from the physical description of the optical system. The resulting image has single valued peaks that correspond to the centroids of the out of focus “donut” images.

A peak finding algorithm is used to identify the coordinates of local maxima in the cross-correlation image. The user can set upper and lower thresholds to limit the range over which the algorithm searches for the local maxima. Individual sub-images are extracted, background subtracted, and flux normalized.

The data used to describe this work is courtesy of LETF.

Curvature Wavefront Estimation

The Theory:

\[
\hat{W} (\theta) = -(\nabla V \nabla + \nabla^2 V) W
\]

\[
\hat{V} = \frac{1}{2} \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) W
\]

\[
\delta W (x,y) = \delta(W) + \nabla \delta W \cdot \nabla W
\]

We begin with the irradiance transport equation (1) and add Neumann boundary conditions (2). The longitudinal derivative of the irradiance of an optical system can be expressed as (3), where W is the wavefront error in units of length, not phase, and \( \delta(W) \) is a ring delta function around the edge. The longitudinal derivative normalized by \( \lambda \) can be approximated as:

\[
\frac{\partial}{\partial z} W (x,y) \approx \frac{1}{\lambda} \left( \frac{\partial}{\partial z} W (x,y) - \delta(W) \right)
\]

If we constrain \( \nabla \delta W \cdot \nabla W \), the edge delta function can be absorbed in the Laplacian. An estimate of the Laplacian of the wavefront error can be rewritten as:

\[
\nabla^2 W (x,y) \approx \frac{1}{\lambda^2} \left( \frac{\partial}{\partial z} W (x,y) - \delta(W) \right)
\]

The physical geometry needed for curvature wavefront sensing is shown in the figure (right).

A numerical solution using the Fourier Transform:

Using the Fourier relationship (5), we can solve for W by substituting the right-hand side of equation (5) into the left-hand side of equation (6) to arrive at a wavefront estimate (7) using the inverse Fourier Transform (IFT).

\[
F_T [\hat{W} (\theta)] = -4 \pi i (1 - \hat{V} (\theta)) F_T [W (\theta)]
\]

\[
W = F_T^{-1} \left( \hat{W} (\theta) + \frac{\partial}{\partial z} W (x,y) \right)
\]

The algorithm:

1. Create or Obtain I, \( \hat{V} \), \( \delta \).
2. Compute sensor signal \( Z = \frac{1}{I} - I_{ref} \).
3. Mask S with a projection of \( \delta \) at the sensor plane. Replace original sensor signal inside boundary after \( \delta \) iteration.
4. \( W = F_T^{-1} \left( \hat{W} (\theta) + \frac{\partial}{\partial z} W (x,y) \right) \).
5. Create \( W_{mask} \) (zero offset and (de-paddings). Subtract plains, tip & tilt, mask off outside.
6. Estimate sensor signal via \( W_{mask} \rightarrow S \).
7. Set \( W_{mask} \rightarrow 0 \) around boundary.

The Theoretical derivation of the algorithm:

1. Create or Obtain I, \( \hat{V} \), \( \delta \).
2. Compute sensor signal \( Z = \frac{1}{I} - I_{ref} \).
3. Mask S with a projection of \( \delta \) at the sensor plane. Replace original sensor signal inside boundary after \( \delta \) iteration.
4. \( W = F_T^{-1} \left( \hat{W} (\theta) + \frac{\partial}{\partial z} W (x,y) \right) \).
5. Create \( W_{mask} \) (zero offset and (de-paddings). Subtract plains, tip & tilt, mask off outside.
6. Estimate sensor signal via \( W_{mask} \rightarrow S \).
7. Set \( W_{mask} \rightarrow 0 \) around boundary.

The algorithm:

1. Create or Obtain I, \( \hat{V} \), \( \delta \).
2. Compute sensor signal \( Z = \frac{1}{I} - I_{ref} \).
3. Mask S with a projection of \( \delta \) at the sensor plane. Replace original sensor signal inside boundary after \( \delta \) iteration.
4. \( W = F_T^{-1} \left( \hat{W} (\theta) + \frac{\partial}{\partial z} W (x,y) \right) \).
5. Create \( W_{mask} \) (zero offset and (de-paddings). Subtract plains, tip & tilt, mask off outside.
6. Estimate sensor signal via \( W_{mask} \rightarrow S \).
7. Set \( W_{mask} \rightarrow 0 \) around boundary.

The Graphical User Interface (GUI)

The GUI controls all tasks. It serves as the pipeline by which the input raw images eventually output valuable information on the telescope’s mechanical errors and distortions. Every task within the GUI also functions automatically. The built-in functions also contain user-defined parameters to allow flexible testing and analysis.

This tool is currently being expanded into a fully automated prototype pipeline with a built in optical reconstruction module, and links to Zemax to test the approach as a full Active Optics Control system for LSST.

LST is a public-private partnership. Design and development activity is supported by in-part the National Science Foundation under Scientific Program Order No. 1009 (LSST/NOAO) and Scientific Program Order No. 1010 (LSST/NOAO). SPIE from 2277 to 2877. The work was also supported by the National Science Foundation through Scientific Program Order No. 1009 (LSST/NOAO) and Scientific Program Order No. 1010 (LSST/NOAO), through the National Geospatial-Intelligence Agency (through its sponsorship of the National Geospatial-Intelligence Agency Center for Research in Scientific Computation), the U.S. Department of Defense (through its sponsorship of the Center for Research in Scientific Computation), and the U.S. Geodetic Survey (through its sponsorship of the Center for Research in Scientific Computation).