Large Synoptic Survey Telescope

www.lsst.org

Image Quality and Performance of the LSST Camera

D.K. Gilmore[‡], S. Kahn[‡], A. Rasmussen[‡], J. Singal[‡], and the LSST Camera Team * SLAC National Accelerator Laboratory / Kavli Institute for Particle Astrophysics and Cosmology

The LSST camera, which will be the largest digital camera built to date, presents a number of novel challenges. The field of view will be 3.5 degrees in diameter and will be sampled by a constraints on the sensor architecture and read-out electronics. The camera also incorporates three large refractive lenses, an array of five wide-band large filters mounted on a carousel (six total), and a mechanical shutter. Given the fast optical beam (f/1.2) and tight tolerances for image quality and throughput specifications, the requirements on the optical elements and focal plane are crucial. We present an overview of the LSST camera, with an emphasis on models of camera image quality and throughput performance that are characterized by various analysis packages and design considerations.

21 rafts × 9 4K x 4K CCDs/ Modular mosaic focal Large field of view implies raft = 189 CCDs total physically large focal plane | plane construction

Overview of LSST Camera Assembly

Image Quality Modeling

We model the image quality performance of the LSST optical system with the method of ray bundles. The field of view is populated with simulated sources from which rays are propagated through the telescope and camera optical elements with geometric optics. Each geometric ray is actually a bundle of rays at many wavelengths, which can, as a group, behave realistically for the wavelength dependent reflection and refraction properties of each optical surface.

Detected focal-plane position of ray bundles from simulated source 'star' onto the LSST camera focal plane, for a particular off-axis viewing angle (1.68°) and focal plane piston position (z=0) for a given focal plane area of 15µm² (one LSST pixel=10µm²).

The system throughput depends on the wavelength-dependent optical properties of every surface. Understanding the effects of nonuniformity, misalignments, deformations, and contamination is an important goal of the camera model, which will inform engineering, construction, and data analysis. The budgeted throughput change is 0.5 millimag (0.046%) between calibrations.

First design of the LSST filters showing the out-ofband leaks and threshold objectives.

Allowable deposition layer thickness of H₂O on CCDs between calibrations for 0.046% transmittance change, for two different antireflective coatings. One monolayer of H₂O is 0.25 nm.

Effect on transmittance of r band filter with 0 (black), 5 (red) and 10 (blue) nm layer of H₂O contamination on either side.

Effects of contamination due to diffraction and absorption (Rayleigh and Mie scattering) and change in index of refraction can be simulated with TFCalc, a thin film design and analysis package including AR (anti-reflection) coatings.

	<u>AR layer</u>	u	g	r	i	Z	у4
	60nm HfO ₂	0.069 nm	1.11 nm	0.28 nm	0.29 nm	0.34 nm	0.41 nm
	110nm HfO ₂	0.067 nm	0.48 nm	0.23 nm	0.57 nm	5.0 nm	0.94 nm

The LSST image simulator incorporates many of the camera and telescope image quality and throughput effects modelled here, and also includes atmospheric effects and simulated fields of view.

Image second moment quantities S2, S2E1 and S2E2 plotted against focal plane axial position, for a simulated star at 1.68° off-axis viewing angle. The red curve (S2) is simply related to the image size, whereas the magenta and blue curves (S2E1 & S2E2) are measures of instrument-induced ellipticity. The full description is captured in 10 x,y dependent parameters. They are available for each of 6 wavebands.

The 10 x,y dependent PSF parameters and the z piston position of any x,y position on the focal plane uniquely determine the spot size and ellipticity at that point. We can use this model to determine, for example, the effects on image quality arising from focal plane non-flatness.

Both image quality and throughput are highly dependent on CCD QE specifications (Red triangles). Measurements of prototype CCDs indicate that specifications can be met. Read noise measurements show optimum output amplifier voltage at 28-29Volts and the diffusion in the CCD silicon shows that about 35-40 volts is optimum for minimum spot size.

