Accurate Cosmography with LSST Time Delay Lenses

Philip J. Marshall1,2, C. P. Sandford3, C. D. Fassnacht4, D. R. Melding5, M. Oguri6, S. H. Suyu7, M. W. Auger6, LSST Strong Lensing Science Collaboration

1University of Oxford, UK, 2KIPAC/Stanford University, 3Imperial College, UK, 4University of California, Davis, 5NAOJ, Japan, 6University of California, Santa Barbara

LSST will discover several thousand lensed quasars and supernovae, and provide high signal-to-noise ratio, well-sampled lightcurves for each. We explore the potential of the expected sample of well-measured 4-image (quad) lens systems for constraining cosmological parameters, when followed-up spectroscopically, via measurements of the "time delay distances to each one. Based on recent experience with individual lenses studied in detail with the VLA, Keck and HST, we make plausible assumptions about our likely knowledge of the lens model and lens environment to quantify the largest sources of systematic error, and use simulations of LSST lightcurves to estimate the expected time delay precision. We find that the resulting constraints on the parameters of the Dark Energy equation of state are competitive with and complementary to those from other LSST cosmological probes.

Measuring with gravitational lenses
- Photon arrival time is just \(D/ c \) where \(D \) is the time delay distance, a combination of distances to and between the lens and source - and depends on cosmological parameters.
- The effective speed \(c' \) varies with gravitational potential and image position - which together determine the refractive index of the lens at each image.

Measuring the B1608+656 distance to 5% accuracy
- B1608+656 is a radio-selected quad lens system. The source is a variable radio AGN: its time delays were measured to 2.5\%-\(F \) (Fassnacht et al 2002, left) in 3 to 6 month seasons of VLA monitoring, at 3-day cadence.
- Deep HST/ACS imaging (left) and Keck spectroscopy were used by Suyu et al (2010) to model the lens potential in some detail. They found the potential to be smooth at the 2\% level, indicating that it is well-described by a simple two-component mass model, with power law density profile. The stellar velocity dispersion provides a strong constraint on the profile index - as does the deep HST imaging of the Einstein Ring.
- The dominant systematic error is due to mass along the line of sight. This "external convergence" is accounted for by folding in a broad PDF generated by sampling the Millennium Simulation and selecting sightlines that are, like B1608's, twice overdense in galaxy number counts.

A mock LSST quad lens sample
- LSST will discover several thousand galaxy-scale time delay lens systems. Requiring the third-brightest image to be detected at 10-sigma in a single exposure taken in median conditions, Oguri & Marshall (2010) estimate that the number of "well-measured" quad lens systems should be around 500 (including both quasar and supernova sources). Their predicted redshifts and time delay distances are shown on the right.
- We show here simulated 6'' cutout images of the mock LSST quadruply imaged quasars (see also the poster by Jernigan et al).
- The lensed images are typically well-resolved in the best seeing images; the narrower-separation lenses will appear as objects with variable, extended morphology (e.g. Kochanek et al 2008).

Cosmography forecast from 100 LSST time-delay quads
- We selected the 100 systems with the brightest lens galaxies, and assumed the time delay distance to each was measured to 5\%.
- This requires a level of follow-up comparable to that devoted to B1608 - the LSST survey data will constrain the external convergence. The resulting cosmological parameter constraints are predicted in the figure to the left.
- Where Suyu et al combined B1608 with WMAP5, we importance-sample the anticipated Planck prior PDF. We do not assume a spatially flat cosmology, and we allow the Dark Energy equation of state parameter to evolve linearly with scale factor (with coefficient \(w_0 \)).
- We predict the following parameter uncertainties (68\% confidence):
 - \(H_0 \pm 2\% \)
 - \(w_0 \pm 0.01 \)
 - \(w_a \pm 0.02 \)
 - \(w_z \pm 0.7 \)

Cosmography forecast from 1500 LSST time-delay doubles
- The sample of doubles will be much larger (they make up 86\% of the mock lens catalog). Oguri & Marshall (2010) computed cosmographic constraints assuming spectroscopic redshifts but no detailed modeling, and found that 1500 double-image time delay quads can provide the similar precision on \(w_0 \) and \(w_a \).
- However, to reach this precision, the mean effective slope of the lens mass profile must be known to \(\pm 0.01 \) current lens samples provide this to just \(\pm 0.03 \).

The problem of follow-up
- Measuring time delay distance to 5\% requires:
 - Spectroscopic redshifts of lens and source, lens galaxy velocity dispersions
 - High resolution, high signal/noise imaging for ring modeling
 - Time delays measured to better than 5\%
 - A sample of 100 quads would require, over 10 years:
 - \(\geq 300 \) hours
 - \(\geq 400 \) hours
 - \(\geq 200 \) hours
 - \(\geq 300 \) hours
 - \(\geq 30 \) nights
 - Additional monitoring

References
- The LSST Science Book, astro-ph/0912.001

LSST is a public-private partnership. Design and development activity is supported by the National Science Foundation. Additional funding comes from private gifts, grants to universities, and a local support of Department of Energy laboratories and other LSST Institutional Members.

Large Synoptic Survey Telescope

www.lsst.org