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Introduction
 One of the main goals for LSST is to probe the cosmic shear 

using weak gravitational lensing [1]. 
 Previous surveys were limited by statistical errors associated 

with the intrinsic shapes of galaxies. With LSST, this statistical 
uncertainty will be reduced by orders of magnitudes, suggesting that 
systematic errors may be the ultimate limiting factor [2]. 

 This is a preliminary report on a larger effort to quantitatively 
account for the expected sources of systematic errors in cosmic 
shear measurements for LSST. 

 We invoke a high fidelity image simulator to quantify the 
uncertainties and spatial correlation of these systematic errors.

 There are three non-stochastic effects in this analysis: the pure optical aberration (IDEAL), the 
optics misalignments (OPT) and the focal plane non-flatness (CHIP). The raw ellipticity two-point 
correlation function for these three effects is shown in Figure 4.

 These spurious shape correlations can in principle be removed if treated properly with PCA [4] 
or similar methods and are neglected in our subsequent analyses. We show them here to 
illustrate the size and contributions.    
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Fig 5. Noise on ellipticity 
measurement vs. object 
brightness for the four stochastic 
noise sources. The shaded area 
shows where counting statistics 
dominate. These curves are 
plotted for a Gaussian object of 
size ~1”. The arrows point to the 
direction where the entire family 
of curves move when a larger/
smaller object is considered. Also 
marked is the intrinsic shape 
noise level ~0.21. 
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Fig 3. Overview of the processes that 
introduce additive systematic errors on 
shear measurements. Blue indicates the 
measured shape/shear (ε or γ) and the 
correlation (C). We use the superscripts 
later text to denote the analysis stage in 
this chart. Yellow describe the possible 
sources of noise that cause the errors; 
red denotes the use of an algorithm. The 
yellow circle illustrates the concept of 
shape distortion in different stages.

Framework
We are interested in three major issues associated with various contributors 
to galaxy shape errors: 

(1) What is the quantitative contribution to the ellipticity error as a function 
of galaxy magnitude, size and shape?

(2) How are those ellipticity errors correlated as a function of angular 
separation?

(3) What are the residual shear errors after correction using our knowledge 
of the PSF, and how are those shear errors correlated with angular 
separation?

 There two classes of physical effects that contribute to errors 
on ellipticity measurements:
‣ Non-stochastic effects

- aberration
- optics misalignment
- focal plane non-flatness

‣ Stochastic effects
- counting statistics
- wavefront correction errors
- tracking errors
- atmosphere distortion

By systematically turning these individual effects on and off in the simulator, 
we can evaluate their contributions to the three issues listed above. An 
illustration of the logic flow of this work can be seen in Figure 3.

We define the ellipticity and correlation function as follows:

‣ ellipticity ε=(ε1,ε2), a combination the object’s second moments, is 
chosen as our shape parameter

‣ two-point correlation function is used to quantify the spatial 
correlation properties:

CXX (Δθ) =〈Xt(θ)Xt(θ+Δθ)〉+〈 Xx(θ)Xx(θ+Δθ)〉

where X=ε for ellipticity correlation and X=γ for shear correlation.

These can be corrected using 
information from multiple 
exposures and methods such 
as Principle Component 
Analysis (PCA)
}

These vary randomly from 
frame to frame and can only 
be corrected using information 
from a single exposure} Fig 7. Examples of PSF ellipticity 

maps. Note that the atmospheric 
turbulence effects are clearly visible. 

 We implement the KSB algorithm [5] 
as an approximation to the deconvolution 
process.

Conclusion
 In this project, we quantify the level and correlation properties for various sources that introduce 

shear systematics in a realistic LSST survey. The LSST Image Simulator is well suited for this 
systematic study.

 For most of the cases, errors on shape measurements are dominated by counting statistics. For 
bright and small object, however, atmospheric distortion is the main contributor to ellipticity 
measurement errors.  

 Correlated errors on ellipticity measurements are dominated by the atmospheric distortions. The two-
point correlation function is ~10-3 at small scales for a single exposure, and falls off at large scales. 

 Using a simple PSF correction algorithm such as KSB, the ellipticity errors can be corrected to first 
order, but may introduce additional correlation on small scales due to the interpolation scheme 
used for PSF modeling. The shear correlation is a factor of 10 smaller than the raw ellipticity 
correlation, and will decrease as 1/N for multiple exposures. For the full LSST survey, the correlation 
should be below 10-7 for all relevant angular scales.   

  nearby stars in the image.
 We simulate this effect using a realistic 

star distribution (~1 star/arcminute2) and 
interpolating the stars with a 3rd order 
polynomial to get the modeled PSF.

 In Figure 9, we show the residual shear 
correlation corrected by the interpolated 
PSF using KSB. Also plotted is a 
comparison with the previous case with 
perfect PSF knowledge. There is significant 
increase of correlation at small scales 
for the imperfect PSF case.

 Note that Figure 9 shows the residual 
shear correlation for a single exposure, 
while we expect that averaging over 
multiple exposures will bring the correlation 
down as 1/N. 

Reference
[1] LSST Science Collaboration, et al. 2009, arxiv:09120201  [2] Huterer et al. 2005  [3] http://lsst.astro.washington.edu/
[4] Jarvis, M., & Jain, B. 2004  [5] Kaiser, N., Squires, G., & Broadhurst, T. 1995

 There are four stochastic effects included in this analysis: counting statistics (CS), residual wavefront correction 
errors (WV), tracking errors (TR) and atmospheric distortions (ATM). 

 The errors on ellipticity measurement as a function of object brightness and size are quantified and summarized in 
Figure 5. The errors are defined as the standard deviation of ellipticity measurements over an ensemble of 
identical input objects, ie. σε1, σε2.

 The correlation of these errors, calculated for each individual effects, and shown in Figure 6a and combined in a 
more realistic situation in Figure 6b. There are features in the correlation function that are related to the atmospheric 
structure model and wind. 

The LSST Image Simulator and 
Targeted Simulations

 The LSST Image Simulator [3] has been developed to support 
software development for the LSST data management effort, and to 
provide high fidelity LSST images for the community.

 A photon-by-photon Monte Carlo approach is adopted to 
capture subtle features in the images. Photons are generated from a 
realistic catalog of objects on the sky, propagated through the 
atmosphere and optics and finally on into the detector (see another 
poster for details: “End-to-End Simulations”, K. Simon et al.). Figure 
1 shows an example of the simulator output.

 Instead of using full LSST simulations that contain all physical 
effects and objects as in real data, in this study, we generate sets of 
reduced images that are designed to target on testing specific 
problems. Figure 2 shows examples of test images used in this 
work.

Fig 1. Output from 
the LSST Image 
Simulator. This 
image combines 
three single 
exposures in the g, r 
and i bands with no 
background added. 
The image contains 
all major physical 
effects as well as 
realistic stellar and 
galaxies. 

Fig 2. The lower right image is generated to 
quantify the noise level as a function of object 
size and magnitude; whereas the upper left 
image shows a dense grid of objects simulated 
to test the correlation
properties of noises. 
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4 VI. STOCHASTIC NOISE SOURCES

to produce ”average” ε1, ε2 maps. Define the error inε1, ε2 to be the difference between the
measured ε1, ε2 in a single exposure and the average frame:

δεi = εi − εi, i = 1, 2

In preparation for calculating the two point correlation functions, the ellipticities δε1, δε2 are
converted to a more general form that uses axes which rotate to align with the pairs of objects
instead of a fixed x-y coordinate.

δεt = −Re(δε−2iφ), δε× = −Im(δε−2iφ)

where δε2 = δε21 + δε22 and φ is the polar angle of the separation vector of the pair of object in
question. The correlation statistics analyzed uses a definition analogy to that used for shear-shear
correlation:

C+(∆θ) = �δεt(θ)δεt(θ +∆θ)�+ �δε×(θ)δε×(θ +∆θ)�

δεi = εi − εi, i = t,×
C+(∆θ) is calculated for each frame and then averaged. Results are shown in Figure 9 where

the averaged C+(∆θ) is plotted against ∆θ, the angular separation in arcminutes. The four col-
ors indicate four noise sources under test. As expected, the counting statistics is not correlated
and consistent with zero on all scale. Optics aberrations produce a small correlation at the level
10−4 on all scale. Imperfect tracking also generates common-mode errors, thus has power on all
scales at an even lower level of 10−5. Interestingly, the atmosphere effects generate correlations
at a fairly high level on small scales and eventually plato at large scale. The blue curve shows
many features which we explain below.

***one paragraph explaining the curve, analyze the 2d correlation, relation to wind direction,
aperture scale etc.***

5. PSF deconvolution

Figure 9. shows the shape correlation of galaxy-size objects before any correction is attempted.
Ideally, the same correlation function is imprinted in the PSF patterns, which could be obtained
from the stars, and a full deconvolution will correct for all the effects discussed above to recover a
flat correlation curve. However, there are two complications that prevent this ideal deconvolution.
First, as in our analyses, most shape measurement algorithms characterize shapes by using a
few parameters rather than conserving the information of all the pixel values. In this context,
deconvolution is then often an approximation process which is not mathematically rigor. Second,
an exact deconvolution requires knowledge of the PSF and the convolved galaxy image at the
same location. Since this not true, the PSF will necessarily need to be modeled via interpolation
or other methods. It has been realized by Massey et al. (2007) that the interpolation process
may introduce undesirable systematics effects, though this effect was never studied in depth.
We demonstrate in the following analysis the level and features of this particular systematic
effect. Additional complication comes from the fact that there are only finite number of stars,
thus a high frequency variation in PSF such as Figure 2(d) may not be sampled properly. The
next two section will focus on PSF deconvolution and address problems resulting from these two
complications.

We will approach the first issue by applying a weak lensing algorithm commonly known as
KSB from Kaiser, Squires and Broadhurst (1995) and modified by Hoekstra, Frank and Kuijken
(1998). By examining the result of PSF correction with KSB and perfectly known PSF, we
quantify the residual shear due to the KSB algorithm itself. The four stochastic noise sources
are analyzed individually to show the change in correlation functions due to PSF correction.
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Fig 4. Ellipticity two-point correlation 
function for the LSST with the non-
stochastic effects. Black points show the 
shape correlation introduced by the optical 
design of LSST. Adding focal plane non-
flatness changes the correlation slightly, as 
shown in red. Optical misalignments can 
increase or decrease the correlation; one 
example is shown here in green. Note that 
the level remains <10-4 .

Results — non-stochastic effects (εns, Cns) 

Results — stochastic effects (εs, Cs) 

 Figure 7 shows examples of the PSF maps used here and the correlation of the residual shear 
after correction is plotted in Figure 8.

Fig 6. Ellipticity two-point 
correlation functions for the 
errors on ellipticity 
measurements due to the 
four stochastic effects 
separately (a) and 
combined (green points in 
b). The lower panel also 
shows the effect of 
averaging over multiple 
frames, which beats downs 
the stochastic noise as 1/N 
but the non-stochastic 
component remains the 
same for all frames and 
does not average out. 
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C+(∆θ) is calculated for each frame and then averaged. Results are shown in Figure 9 where

the averaged C+(∆θ) is plotted against ∆θ, the angular separation in arcminutes. The four col-
ors indicate four noise sources under test. As expected, the counting statistics is not correlated
and consistent with zero on all scale. Optics aberrations produce a small correlation at the level
10−4 on all scale. Imperfect tracking also generates common-mode errors, thus has power on all
scales at an even lower level of 10−5. Interestingly, the atmosphere effects generate correlations
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many features which we explain below.

***one paragraph explaining the curve, analyze the 2d correlation, relation to wind direction,
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5. PSF deconvolution

Figure 9. shows the shape correlation of galaxy-size objects before any correction is attempted.
Ideally, the same correlation function is imprinted in the PSF patterns, which could be obtained
from the stars, and a full deconvolution will correct for all the effects discussed above to recover a
flat correlation curve. However, there are two complications that prevent this ideal deconvolution.
First, as in our analyses, most shape measurement algorithms characterize shapes by using a
few parameters rather than conserving the information of all the pixel values. In this context,
deconvolution is then often an approximation process which is not mathematically rigor. Second,
an exact deconvolution requires knowledge of the PSF and the convolved galaxy image at the
same location. Since this not true, the PSF will necessarily need to be modeled via interpolation
or other methods. It has been realized by Massey et al. (2007) that the interpolation process
may introduce undesirable systematics effects, though this effect was never studied in depth.
We demonstrate in the following analysis the level and features of this particular systematic
effect. Additional complication comes from the fact that there are only finite number of stars,
thus a high frequency variation in PSF such as Figure 2(d) may not be sampled properly. The
next two section will focus on PSF deconvolution and address problems resulting from these two
complications.

We will approach the first issue by applying a weak lensing algorithm commonly known as
KSB from Kaiser, Squires and Broadhurst (1995) and modified by Hoekstra, Frank and Kuijken
(1998). By examining the result of PSF correction with KSB and perfectly known PSF, we
quantify the residual shear due to the KSB algorithm itself. The four stochastic noise sources
are analyzed individually to show the change in correlation functions due to PSF correction.
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to produce ”average” ε1, ε2 maps. Define the error inε1, ε2 to be the difference between the
measured ε1, ε2 in a single exposure and the average frame:

δεi = εi − εi, i = 1, 2

In preparation for calculating the two point correlation functions, the ellipticities δε1, δε2 are
converted to a more general form that uses axes which rotate to align with the pairs of objects
instead of a fixed x-y coordinate.

δεt = −Re(δε−2iφ), δε× = −Im(δε−2iφ)

where δε2 = δε21 + δε22 and φ is the polar angle of the separation vector of the pair of object in
question. The correlation statistics analyzed uses a definition analogy to that used for shear-shear
correlation:

C+(∆θ) = �δεt(θ)δεt(θ +∆θ)�+ �δε×(θ)δε×(θ +∆θ)�

δεi = εi − εi, i = t,×
C+(∆θ) is calculated for each frame and then averaged. Results are shown in Figure 9 where

the averaged C+(∆θ) is plotted against ∆θ, the angular separation in arcminutes. The four col-
ors indicate four noise sources under test. As expected, the counting statistics is not correlated
and consistent with zero on all scale. Optics aberrations produce a small correlation at the level
10−4 on all scale. Imperfect tracking also generates common-mode errors, thus has power on all
scales at an even lower level of 10−5. Interestingly, the atmosphere effects generate correlations
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5. PSF deconvolution

Figure 9. shows the shape correlation of galaxy-size objects before any correction is attempted.
Ideally, the same correlation function is imprinted in the PSF patterns, which could be obtained
from the stars, and a full deconvolution will correct for all the effects discussed above to recover a
flat correlation curve. However, there are two complications that prevent this ideal deconvolution.
First, as in our analyses, most shape measurement algorithms characterize shapes by using a
few parameters rather than conserving the information of all the pixel values. In this context,
deconvolution is then often an approximation process which is not mathematically rigor. Second,
an exact deconvolution requires knowledge of the PSF and the convolved galaxy image at the
same location. Since this not true, the PSF will necessarily need to be modeled via interpolation
or other methods. It has been realized by Massey et al. (2007) that the interpolation process
may introduce undesirable systematics effects, though this effect was never studied in depth.
We demonstrate in the following analysis the level and features of this particular systematic
effect. Additional complication comes from the fact that there are only finite number of stars,
thus a high frequency variation in PSF such as Figure 2(d) may not be sampled properly. The
next two section will focus on PSF deconvolution and address problems resulting from these two
complications.

We will approach the first issue by applying a weak lensing algorithm commonly known as
KSB from Kaiser, Squires and Broadhurst (1995) and modified by Hoekstra, Frank and Kuijken
(1998). By examining the result of PSF correction with KSB and perfectly known PSF, we
quantify the residual shear due to the KSB algorithm itself. The four stochastic noise sources
are analyzed individually to show the change in correlation functions due to PSF correction.
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Fig 8. For a single exposure, if the PSF is known 
perfectly, the KSB algorithm corrects the correlated errors 
in ellipticity (black) and leaves residual shear correlations 
at <10 -5  levels as shown in the inset (red).
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(1998). By examining the result of PSF correction with KSB and perfectly known PSF, we
quantify the residual shear due to the KSB algorithm itself. The four stochastic noise sources
are analyzed individually to show the change in correlation functions due to PSF correction.
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Results — residual shear / perfect PSF knowledge (γKSB, CKSB) 

Results — residual shear / imperfect PSF knowledge (γKSB’, CKSB’) 

Fig 9. For a single exposure, if a simple interpolation 
scheme is used to obtain the PSF model, the KSB 
algorithm corrects the correlated errors in ellipticity 
(black) and leaves residual shear correlations at ~10 -4  
on small scales and <10 -5  on large scales (blue). 
Comparison with the previous case shows that 
the interpolation process causes spurious 
correlation on small scales.

4 VI. STOCHASTIC NOISE SOURCES

to produce ”average” ε1, ε2 maps. Define the error inε1, ε2 to be the difference between the
measured ε1, ε2 in a single exposure and the average frame:

δεi = εi − εi, i = 1, 2

In preparation for calculating the two point correlation functions, the ellipticities δε1, δε2 are
converted to a more general form that uses axes which rotate to align with the pairs of objects
instead of a fixed x-y coordinate.

δεt = −Re(δε−2iφ), δε× = −Im(δε−2iφ)

where δε2 = δε21 + δε22 and φ is the polar angle of the separation vector of the pair of object in
question. The correlation statistics analyzed uses a definition analogy to that used for shear-shear
correlation:

C+(∆θ) = �δεt(θ)δεt(θ +∆θ)�+ �δε×(θ)δε×(θ +∆θ)�

δεi = εi − εi, i = t,×
C+(∆θ) is calculated for each frame and then averaged. Results are shown in Figure 9 where

the averaged C+(∆θ) is plotted against ∆θ, the angular separation in arcminutes. The four col-
ors indicate four noise sources under test. As expected, the counting statistics is not correlated
and consistent with zero on all scale. Optics aberrations produce a small correlation at the level
10−4 on all scale. Imperfect tracking also generates common-mode errors, thus has power on all
scales at an even lower level of 10−5. Interestingly, the atmosphere effects generate correlations
at a fairly high level on small scales and eventually plato at large scale. The blue curve shows
many features which we explain below.

***one paragraph explaining the curve, analyze the 2d correlation, relation to wind direction,
aperture scale etc.***

5. PSF deconvolution

Figure 9. shows the shape correlation of galaxy-size objects before any correction is attempted.
Ideally, the same correlation function is imprinted in the PSF patterns, which could be obtained
from the stars, and a full deconvolution will correct for all the effects discussed above to recover a
flat correlation curve. However, there are two complications that prevent this ideal deconvolution.
First, as in our analyses, most shape measurement algorithms characterize shapes by using a
few parameters rather than conserving the information of all the pixel values. In this context,
deconvolution is then often an approximation process which is not mathematically rigor. Second,
an exact deconvolution requires knowledge of the PSF and the convolved galaxy image at the
same location. Since this not true, the PSF will necessarily need to be modeled via interpolation
or other methods. It has been realized by Massey et al. (2007) that the interpolation process
may introduce undesirable systematics effects, though this effect was never studied in depth.
We demonstrate in the following analysis the level and features of this particular systematic
effect. Additional complication comes from the fact that there are only finite number of stars,
thus a high frequency variation in PSF such as Figure 2(d) may not be sampled properly. The
next two section will focus on PSF deconvolution and address problems resulting from these two
complications.

We will approach the first issue by applying a weak lensing algorithm commonly known as
KSB from Kaiser, Squires and Broadhurst (1995) and modified by Hoekstra, Frank and Kuijken
(1998). By examining the result of PSF correction with KSB and perfectly known PSF, we
quantify the residual shear due to the KSB algorithm itself. The four stochastic noise sources
are analyzed individually to show the change in correlation functions due to PSF correction.
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 In practice, the PSF is not known a priori, and must be estimated by measuring the shapes of  
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