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mthough the numbers of known quasars and active galactic nuclei (AGN) have grown considerably in the past decade, a vast discovery space remains to be explored. LSST will fill the gaQ
by producing a sample of at least 10 million optically-selected AGNs that will span more than a factor of 1,000,000 in luminosity, and will allow detection of ~1000 AGN beyond a redshift of 7.
Utilizing a combination of colors, photometric variability, and lack of proper motion, this large-area AGN survey will dwarf the largest current samples by more than an order of magnitude.
Each LSST region will receive ~1000 visits, allowing variability to be explored on timescales from minutes to a decade. The ground-breaking combination of area, depth, and cadence will allow
for significant new AGN (and other related transient) science. LSST will break the luminosity-redshift degeneracy inherent to shallower flux-limited samples and provide unprecedented
quantification of the optical AGN luminosity function. Such statistical studies will help define the demographics and accretion history of supermassive black holes with cosmic time, and relate
these to the formation and evolution of galaxies. LSST will discover sufficient numbers of faint, high-redshift AGN to enable clustering measurements that will place important constraints on
models for the relationship between AGN and the dark matter distribution. LSST will also investigate multi-wavelength phenomena, with its power coming from the ability to compare with both
wide-area and pencil-beam surveys at other wavelengths. The former is important for investigations of rare objects, the latter for probing intrinsically more numerous, but undersampled
populations. In short, LSST will produce transformative results in our understanding of AGN fueling mechanisms, the physics of accretion disks, the contribution of AGN feedback to galaxy

wolution, the cosmic dark ages, and science based on the use of AGN as background sources. /
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fraction of AGN will be detected as variable objects. After 12 epochs = E

SMBHs at the centers of galaxies are intimately connected to the evolution of with a total temporal baseline of 360 days, nearly all of the AGN to a ) SN
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and the dark matter distribution. Because AGN are an inherently broad-band § AGN are an inherently broad-band phenomenon with emission from the highest-energy gamma-rays to long-
phenomenon, the overlap between the LSST AGN survey and surveys at 2 . s wavelength radio probing different aspects of the physics of the central engine (e.g., Elvis et al. 1994). The rich
other wavelengths will enable a large number of multi-wavelength studies. ; diversity of radiation that adds complexity to their SEDs also enable a more detailed understanding of their
Moreover, a key benefit of this enormous LSST sample will be the discovery of i complicated, multi-region structure from the accretion disk, to corona, to jets, to outflowing winds. LSST will
unexpected, previously unknown, and/or extremely rare events such as overlap surveys carried out in a broad range of wavelengths, allowing studies of a large number of multi-
transient fueling events or large numbers of multiply-lensed AGN. gy = S wavelength phenomena. LSST's multi-wavelength power comes from the ability to compare with both wide-
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Here we summarize the selection of AGN from LSST data and how those \ B s * ‘ objects, while the latter probe intrinsically more numerous, but undersampled population. The figure above
AGN will be used for investigations of clustering, transients, the luminosity compares the LSST single epoch depth to other large area fields (top) in addition to showing examples of
function, and multi-wavelength phenomena. / Clustering where the co-added depth of LSST complements deep observations at other wavelengths (bottom). Multi-

wavelength data for the LSST AGN census will produce the largest inventory of AGN SEDs over a very wide

AGN clustering is a reflection of the dark matter halos
in which these objects are embedded. The relationship
\ between AGN clustering and that of “ordinary” galaxies can give

Qavelength range, allowing better constraints on typical accretion and reprocessing mechanisms. /
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important clues about how the two are physically related. The Transient SMBH Phenomena

Utilizing large sky coverage, depth, six galaxy correlation function at low redshift has been measured Strong transient outbursts from galactic nuclei can occur when a star, planet, or gas cloud is tidally
filters extending to 1um, and valuable = precisely, using samples of hundreds of thousands of galaxies (e.g., disrupted and partially accreted by a central SMBH. An optical flare lasting several months is expected
temporal information, the LSST AGN i Zehavi et al. 2005), allowing quite accurate determination of the when a star disintegrates outside the event horizon. LSST will be a premier facility for discovering and
survey will dwarf the largest current Sl bias as a function of scale for various subsets of galaxies. monitoring such transient SMBH phenomena, enabling and aiding studies across the electromagnetic
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