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LSST will find more strong gravitational lensing events than any other survey preceding it, and will monitor them all at a cadence of a few days to a few weeks. We can expect the biggest\
advances in strong lensing science made with LSST to be in those areas that benefit most from the large volume, and the high accuracy multi-filter time series: studies of, and using, several
thousand lensed quasars and several hundred supernovae. However, the high quality imaging will allow us to detect and measure large numbers of background galaxies multiply-imaged by
galaxies, groups and clusters. In this poster we give an overview of the strong lensing science enabled by LSST, and highlight the particular associated technical challenges that will have to be
faced when working with the survey.
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Dark Matter Subhalos

"Millilensing" by dark matter subhalos of mass 10%-10"° Mo (predicted in large

numbers, Springel et al 2008) perturb the fluxes of point-like images in Above: long-term microlensing image flux variations in the Einstein Cross, Q2237+0305.
galaxy-scale lenses by tens of percent, and their positions by several to tens (APOD image by Lewis, Irwin, et al., http://apod.nasa.gov/apod/ap961215.htm)

of milli-arcseconds: these "anomalies" can be identified and exploited by

careful modeling (Dalal & Kochanek 2002). Strong lensing provides a unique Below: modeling QSO microlensing. Moving the source across the caustics of a model Dust in Lens Galaxies
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opportunity to detect these mass clumps, test CDM predictions, and probe accretion disk is smaller, and so appears more variable, in the bluer filters. Strong gravitational lenses provide multiple

galaxy formation on the smallest scales. LSST will enlarge the current
sample by ~100, allowing us to probe the mass function, spatial distribution,
and density profiles of the subhalos, all as a function of redshift.

independent sight-lines per system, allowing the
differential dust extinction curve of the lens galaxy to be
deduced (Nadeau et al. 1991). The combined LSST
sample of several thousand lensed quasars and
supernovae enables extensive studies of the extinction

properties of high redshift galaxies as a function of
galacto-centric radius, and probes the evolution of dust
with redshift and galaxy type. For the lensed SNe, the
dust emission of the lensing galaxy can be measured
once the SN has faded, making it possible, for the first
time, to do a comparative study of dust extinction and

Coping with Microlensing

LSST monitoring of lenses will be essential to remove microlensing effects
on the image fluxes - but what precision will remain, given the universal
cadence planned? Modeling microlensing by brute force simulation of
caustic crossings (Kochanek 2004) is robust but computationally intensive -

and only gets more so as the light curve lengthens. The radio-loud 3.5 3 dust emission in galaxies outside the Local Group.
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2y \ SDSS lensed QSOs. Note the reddened inner images in the left two panels, and the
benefit of seeing the lens galaxy light (right). The LSST image quality is expected

1¢e to be a factor of 2 higher than SDSS.
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Dark Matter and Dark Energy with Clusters of Galaxies
Strong lensing has an important role to play in cluster physics studies; meanwhile,
the cluster mass function is one of the four most promising dark energy probes
(Albrecht et al. 2006). LSST will detect and measure ~1000 strong-lensing clusters, in
which the combination of both weak and strong lensing data will allow us to
reconstruct the mass distribution from the inner cores (~10kpc) to the clusters’
outskirts (~1Mpc) with better than 10% accuracy. This high-fidelity mass profile will
provide opportunities to test the CDM-predictions such as the profile concentration
(and its relation to halo mass and redshift), the halo ellipticity, and the substructure
mass function. These lensing masses will also provide critical calibration of
concurrent or future optical, weak lensing, X-ray or SZ samples, and provide
information on dark and baryonic matter interactions by studying the departure from
the theoretical scaling relations. Strong lensing data will reduce the uncertainty in the
cluster mass function where it is most needed, at the high mass end.
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Left: spectacular lensing cluster A1703., observed at LSST resolution with Subaru.

Center: density profile measurement in massive cluster RXJ1347, from a strong + weak lensing analysis.
G}ag gc?;)sity is from a fit to the Chandra X-ray surface brightness and temperature. (Data from Bradac et
al. ’

Right: the mass function of collapsed objects, from galaxies to clusters. Accurate cluster masses are vital
for measuring cosmological parameters, and the sensitivity is highest at the high mass end.
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Modeling the Cluster Sample
Clusters can be detected either by their weak lensing shear peaks, or their optical richness. Therefore, understanding
both selection functions will be critical in constructing cluster mass functions. In addition, identification of strongly
lensed sources, which can be iteratively improved by mass modeling, needs to be automated (crowd-sourced?) in
order to study ~1000 clusters. Modeling one thousand clusters to high accuracy will be a challenge. Improved
numerical simulations (both dark and baryonic matter) will be needed to fully exploit the significant observational
improvements LSST offers, both for studies of cluster structure and cosmology with the mass function.
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