Calibration of LSST Instrument and Data

1Jet Propulsion Laboratory, CalTech & APC Univ. Paris 7, 2IFIC, Valencia, 3Steward/LSST, 4SLAC, 5WSU, 6NOAO, 7Harvard Univ., 8NIM, 9C. Williams, 10LSSTcollaboration, 11APSU, 12UCD

Science studies with the Large Synoptic Survey Telescope will push experimental systemsatics to unprecedentedly low levels, demanding high-precision astrometric and photometric calibration. Our photometric requirements of 1.0% on repeatability and uniformity of measurements of magnitudes of stars, and 0.5% on the accuracy of measured colors, under varying observing conditions, pose a particular challenge. We are therefore developing innovative methods combining telescope-camera system throughput calibration with a tunable laser, real-time spectroscopic monitoring of atmospheric extinction and the high redundancy of our observing program. To optimize and validate the calibration scheme, we are pursuing studies on existing telescopes and putting in place a large simulation of instrumental and atmospheric effects.

Introduction:
The LSST will observe in six photometric bands b,u,g,r,i,z,y similar to the SDSS bands (Fukugita et al. 1996). The instrumental bandpasses computed for this system with the LSST design (accounting for the transmission through a typical atmosphere at Cerro Pachon, the reflectivity of the reflective optics, the transmissivity of the reflective optics, and the quantum efficiency of the sensors) are shown below (LSST SB, 2009).

The survey photometric calibration procedure distinguishes two aspects:
- Calibration of the instrument response.
- Calibration of atmospheric effects, which is the focus of this paper.

Calibration requirements:
The science goals of the LSST pose stringent requirements on the stability and uniformity of photometric measurements. The specifications are defined for bright isolated stars that will not be affected by the photon statistics for a single exposure (e.g. r < 21) and are summarized in the table below. (Ivezic et al 2007)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Repeatability</td>
<td>0.010 mag rms</td>
</tr>
<tr>
<td>Spatial uniformity</td>
<td>0.005 mag rms</td>
</tr>
<tr>
<td>Color accuracy</td>
<td>0.005 mag rms</td>
</tr>
</tbody>
</table>

Such photometric precision has been approached with SDSS and the CFHT, but in general errors are typically a factor of two larger. Furthermore, the aggressive LSST observing schedule demands observations under diverse, less than ideal conditions. One of the key factors in achieving our calibration goals is the control and monitoring of atmospheric effects.

Calibration strategy:
- Self-calibration: Calibrating with LSST observational data
 - Reference stars: 100 main sequence stars 16<r<21 per chip per image get m_{\odot}
 - Color standards: Hydrogen white dwarfs (Butner et al. 2009) get Δm.

Simulating the atmospheric transmittance:
The MODTRAN (MODTRAN4) atmospheric model code is used to simulate the spectral extinction by various atmospheric components at the time and in the direction of each LSST pointing. The behaviour of each component is driven by a long term scenario (seasonal variations) and shorter term effects.

Under non ideal observing conditions, the presence of thin clouds can affect the photometry. A first simulation of gray extinction has been produced using gaussian random fields. This is based on measured clouds structure functions (see right panel). This part of the simulation is combined with the atmospheric transmittance studies to produce a full simulation of the atmospheric effects. Variations in gray extinction can be measured by adopting a given observation as the reference and comparing all other observations to it.

To determine relative zero point errors on small scales (Δm) over 10 years multi epoch all sky survey, observational data will be used for autocalibration. The procedure will be based for LSST on the SDSS Udircal (Padmanabhan, 2007). For each patch p on each image i, the relative error $\Delta m(p,i)$ is found by minimizing:

$$\chi^2 = \sum_{p \in P} \left(m_{\text{meas}}(p,i) - m_{\text{true}}(p,i) + \alpha \Delta m(p,i) + \beta \Delta m(p,i)^2 \right)^2$$

This procedure will be validated for LSST, via the development of a precise simulation of the atmospheric transmittance including gray and non-gray components of the extinction.

Simulating and calibrating small scale variations: the grey extinction challenge

Monitoring atmospheric variations with the auxiliary telescope: CALYPSO
CALYPSO, a 1.2m auxiliary telescope equipped with spectrometer will be installed next to the LSST to monitor the spectral transmission using stars with known SEDs to determine atmospheric extinction at the same time as LSST observations.

Auxiliary data
- Atmospheric transmittance get T_{atm}
- Instrumental response get T_{inst}

Determine m_{true} on top of the atmosphere magnitudes

$
T_{\text{inst}} = T_{\text{atm}} \times T_{\text{meas}}$

Calibration for data release:

$$m_{\odot} = m_{\text{meas}} + \alpha \Delta m(p,i) + \beta \Delta m(p,i)^2$$

Determining the atmospheric color terms (~min).

Calibration responses:
- A tunable laser can be used to calibrate the response function of the instrument and camera.
- A photodiode calibrated to 0.1% relative accuracy monitors the integrated optical exposure (450nm < λ < 950 nm).
- Spatial uniformity of the dome screen within 10% is sufficient, but its angular distribution must be uniform on the 3.5° LSST FOV. Tests of this system on the CTIO telescope have been reported (Stubbs 2007b).

References:
- Butner et al, AAS Poster 401.020, this session, 2010
- LSST collaboration, LSST Science Book, 2009
- MODTRAN4 29 Randolf Rd, Hanson AFB MA 01731
- Stubbs, C. et al, APSC 364, 373, 2007b