
Weak lensing observations and supernova observations, combined with CMB observations, can both provide powerful 
constraints on dark energy properties. We find luminosity distances inferred from 2000 supernovae and large-scale (l < 1000) 
angular power spectra inferred from redshift-binned cosmic shear maps of half of the sky place complementary constraints on 
w0 and wa where w(z) = w0 + wa(1-a). Further, each set of observations constrains higher-dimensional parameterizations of w(z) 
and constrains these in different ways. To quantify these abilities we consider eigenmodes of the w(z) error covariance matrix. 
The best-determined mode for each dataset has a standard deviation of about 0.03. This error rises quite slowly with increasing 
eigenmode number for the lensing data, reaching one only by the 7th mode. The eigenmode shape differences indicate that 
lensing is better at probing higher z while supernovae have their chief advantage at lower z. 
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Complementary Probes Given the importance of the 
dark energy mystery and the challenges to constraining 
its properties, the diversity of methods to probe it is a 
blessing.   Here we concentrate on two methods: weak 
lensing shear power spectra vs redshift and supernova 
luminosity distances vs redshift.  Each of these very 
different types of observations are potentially powerful 
probes of dark energy. In particular we examine the 
complementary nature of their statistical errors. See the 
following two posters for complementary weak lens 
methods. 

1. Introduction1. Introduction Figure 1: Shear Power SpectraFigure 1: Shear Power Spectra
The shear-shear auto power spectra. The 
8 solid curves are the shear  power 
spectra from each of the eight galaxy 
source planes. Dotted curves are the 
linear perturbation theory approximation.  
The source plane redshift intervals are all 
of width 0.4 and are centered on, from 
bottom top:  0.2, 0.6. 1.0, 1.4, 1.8, 2.2, 2.6 
and 3.0. The error boxes are forecasts for 
LSST. The top dashed curve is the shear 
power spectrum for the CMB source 
plane.  The error boxes are forecasts for 
CMBpol. 

Figure 3.Figure 3. Eigenvalues and first three eigenmodes of the w(z) error covariance 
matrix for LSST WL+Planck and 2000 SNe+Planck. The large contributions to 
the eigenmodes from the highest redshift-bin are an artifact of that bin being 
much broader than the rest, extending all the way to the last-scattering surface.

Cosmic Shear For the 20,000 deg2 LSST weak lens 
survey, we assume a galaxy redshift distribution for a 
limiting magnitude in R of 26 inferred from observations 
with the Subaru telescope (Nagashima et al. 2002). The 
shape of this distribution is well-described by the 
following analytic form: 

dn/dz / z1.3exp[-(z/1.2)1.2]  for   z <1 
dn/dz / z1.1exp[-(z/1.2)1.2] for   z >1. 

We use this distribution with the modification that half of 
the galaxies in the 1.2 < z < 2.5 range are discarded as 
undetectable.  The amplitude of the distribution is such 
that, after this cut, the number density of galaxies is 65 
per sq. arcmin.

We further assume that the galaxies can be divided, by 
photometric redshift estimation, into eight different 
redshift bins: [0-0.4], ..., [2.8-3.2] and that for angular 
frequencies 40 < l < 1000 systematic errors are small.  
While this last assumption is consistent with recent data 
from new technology telescopes (see Claver etal poster), 
all-sky simulations will be necessary.  Finally, we 
assume that the shape noise (expressed as a per-
component rms shear) is given by γrms(z) = 0.15+0.035z.

For more on data modeling, see Song & Knox (2003). 
Supernovae. For the supernova survey we assume 2000 

distributed in redshift as described in Kim et al. 2004 as a 
baseline SNAP supernova survey.  In addition, we 
assume measurement of 100 local supernovae.  To our 
cosmological parameter set, detailed below, we add a 
supernova luminosity calibration parameter.  

2. Models of the Data2. Models of the Data Figure 2:  wFigure 2:  w00 & & wwaa Error Error 
ForecastsForecasts One sigma error contours 
in the w0-wa plane for LSST shear 
survey, 2000 SNe, and the combination 
(as labeled) where w(z) = w0+wa(1-a). 
The dashed curve is for LSST with the 
source density uniformly decreased by a 
factor of 2.  These same shear data can 
be analyzed with other statistics such as 
three-point correlations (Jarvis and 
Takada posters),and mass cluster counts 
(Haiman poster), collectively yielding 
higher precision. 

3. Models of Cosmology3. Models of Cosmology
The Parameter Set. We take our (non-w(z)) set to be P = 

{wm, wb, wn, qs, zri, k3PF
i(kf), ns, ns', yHe}, with the 

assumption of a flat universe. The first three of these are 
the densities today (in units of 1.88 x 10-29g/cm3) of cold 
dark matter + baryons, baryons, and massive neutrinos. 
We assume two massless species and one massive 
species. The next is the angular size subtended by the 
sound horizon on the last-scattering surface. The 
Thompson scattering optical depth for CMB photons, t, is 
parameterized by the redshift of reionization zri. The 
primordial potential power spectrum is assumed to be a 
near power-law with spectral index ns(k) = nS(kf) + 
nS'ln(k/kf) and kf = 0.05 Mpc-1. The fraction of baryonic 
mass in Helium (which affects the number density of 
electrons) is yHe.  We Taylor expand about P = {0.146, 
0.021, 0, 0.6, 6.3, 6.4 x 1011, 1, 0, 0.24}. The Hubble 
constant for this model is H0 = 65.5 km/s/Mpc.

w(z) in redshift bins. To deepen our understanding of how 
these surveys are constraining dark energy, we have 
examined how they constrain the function w(z), rather 
than its simple parameterization by w0 and wa. We 
proceed by binning w(z) in redshift bins and then 
identifying the eigenmodes and eigenvalues of the binned 
w(z) error covariance matrix as was done for supernovae 
by Huterer & Starkman (2003).

4. Results4. Results
We particularly emphasize the eigenmode/eigenvalue

results from our analysis of the statistical errors. We see a 
striking difference in the modes for 2000 SNe vs. the 
modes for LSST WL: those for LSST stretch out to 
higher z. The reason for this is that lensing is less 
sensitive to the growth factor at the lower redshifts where 
the source density in a given redshift bin is small and the 
lensing window (for sources at higher z) is also small.  
Thus the supernovae are better at detecting changes in 
w(z) at lower z and LSST shear tends to be better at 
detecting changes at higher redshift.

LSST and 2000 SNe also have strikingly different 
eigenvalue spectra.  The error on the amplitude of the 
best determined mode is quite similar for each ~0.03.  
But the 2000 SNe spectrum is much steeper.  LSST has 
six modes with sigma < 0.5, whereas 2000 SNe has three.
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