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Constraining dark energy parameters with weak lensing is one of the primary science goals of the LSST.  The LSST Weak Lensing Science Collaboration has been formed with the goal of optimizing the 
weak lensing science by optimizing the survey cadence; working with Data Management to insure high-quality pipeline processing which will meet our needs; developing the necessary analysis tools 
well before the onset of data-taking; participating in high-fidelity simulations to test the system end-to-end; and analyzing the real dataset as it becomes available.
We review the major weak lensing probes, the two- and three-point shear correlations, and how they constrain dark energy parameters.  We also review the possibility of going beyond dark energy 
models and testing gravity with the LSST data.  To realize the promise of the awesome LSST statistical precision, we must ensure that systematic errors are kept under control.  We summarize the major 
sources of systematics and our plans for mitigation.  We address these sources of systematics and corresponding mitigation strategies.

1. Weak Lensing1. Weak Lensing

Gravitational lensing is the deflection of 
light, due to a mass concentration 
intervening between source and observer.  
A spectacular example of strong
gravitational lensing is shown next to the 
LSST logo at the top of this poster: a blue 
background galaxy is seen multiple times, 
stretched around a ring centered on a 
massive cluster of galaxies.  However, 
strong lensing happens only along the 
densest lines of sight in the universe.  Weak
lensing extends this idea to any line of sight 
by examining ensembles of background 
galaxies.  This poster focuses on cosmic 
shear, or weak lensing by large-scale 
structure.  The LSST Weak Lensing Science 
Collaboration will also use weak lensing to 
study clusters and galaxies.

Weak lens shear depends on source-lens 
observer geometry as well as the lens mass 
structure, so it probes cosmology  in two 
different ways. This enables going beyond 
testing dark energy models, to testing 
gravity itself. 

3. Tests of Gravity3. Tests of Gravity

LSST enables going beyond dark energy models, to testing 
gravity itself.  Weak lensing data can be used to simultaneously
reconstruct both the distance-redshift relation, which depends 
on the expansion history, H(z), and the growth-redshift relation, 
which depends on both the expansion history and the 
gravitational-force law.  Assuming Einstein gravity (and spatially 
smooth dark energy) one can use the distance-redshift relation 
to predict the growth-redshift relation.  Non-Einstein gravity can 
lead to a discrepancy between the observed growth-redshift 
relation and this predicted one, which is testable with LSST 
(Lue et al. 2004, Song 2005, Knox et al. 2006).

References
Dvali, Gabadadze & Porrati, Phys. Lett. B 485, 208 (2000)
Huterer et al, MNRAS 366, 101 (2006)
Jarvis et al, AAS 207, 2635 (2005)
King, A&A 441, 47 (2005)
Knox, Song & Tyson, Phys Rev D 74 023512 (2006)
Lue, Scoccimarro & Starkman, Phys. Rev. D 69, 044005 (2004)
Ma et al, ApJ 636, 21 (2006)
Massey et al, astro-ph/0608643
Song, Phys. Rev. D 71, 024026 (2005)
Vale & White, ApJ 613, 1L (2004)     
Wittman, ApJ 632, 5L (2005)

2. Cosmic Shear2. Cosmic Shear

The primary cosmic shear statistic is the two-point shear correlation function, or its Fourier transform, the power 
spectrum.  Shear increases with source redshift due to larger distances and more intervening structure.  We 
can get information from both the autocorrelations and cross-correlations of redshift shells. 

With 3 billion galaxies, the LSST dataset will yield very precise measures of the two-point function.  To illustrate 
this, we present a series of photometric redshift bins from a mock LSST survey (ten bins evenly spaced from 
z=0 to 3.5, of which five are shown below).  The top panel represents the angular and redshift distribution of 
source galaxies, the middle shows the true redshift distribution of the photometric redshift slices (allowing for 
errors of 0.05(1+z) per galaxy), and the bottom panel shows the lensing kernel, or sensitivity to intervening 
structure as a function of redshift, for each slice. 

Next, we compute the shear power spectra. Below: auto-
power spectrum for z=1.23 (solid curve) and sample cross 
power spectra (dot and dash curves). The forecast errors 
(shaded) assume 50 galaxies arcmin-2.  Detailed 
simulations  show that 35 is more likely, but the dominant 
error here is sample variance in any case.

4. Systematics4. Systematics
The challenge in reaching these goals lies in controlling 
systematic errors to a level comparable to the statistical 
uncertainties.  We present a nonexhaustive list of possible 
systematics, including the potential threat, current progress,  
and possible mitigation for each.

Photometric redshift errors: this is perhaps the most serious 
concern, as the levels assumed at left are quite ambitious.  
Note that actual bias and scatter are not as important as 
knowing the bias and scatter (Ma et al 2006).  Therefore we 
are developing ways to characterize the true redshift 
distribution of any photometric redshift slice, independently of
the photometric redshift algorithm; see the LSST poster by 
Newman et al.
Shear calibration: the STeP project has shown that the best 
current methods are good to about a percent (Massey et al 
2006).  Over the next decade, the LSST Weak Lensing 
Science Collaboration must develop or identify a method which 
performs several times better.  We will build on the continuing 
progress of the STeP project, and take it further with blind 
analyses of high-fidelity mock LSST data. Huterer et al (2006) 
have presented a framework for budgeting multiplicative and 
additive errors which will be useful in this context.
Spatio-temporal variations: variations in seeing, combined 
with imperfect shear calibration, will add power on scales larger 
than an LSST field (3.5 deg).  We are performing a Vale & 
White (2004) type analysis of a full 10-year LSST survey (this 
survey is detailed in the Pinto et al LSST poster). Because 
each field will be observed hundreds of times, with a 
FWHM<0.7” constraint, variations are likely to be small; 
however, additional reductions could be achieved by 
constraining the scheduler to minimize variation as well.
Spurious shear from the atmosphere: Wittman (2005) 
showed that, given the standard 1 star arcmin-2 to diagnose the 
point-spread function (PSF),  the residual shear in short (15 s) 
exposures with an 8-m telescope (Subaru), was well below the 
cosmological signal on small scales and averaged down with 
additional exposures, easily meeting LSST requirements.  This 
assumed perfect correction for PSF effects given imperfect 
knowledge, and did not address large scales, so more detailed 
studies are still required.
Intrinsic alignments are thought to exist at some as-yet-
unknown level.  By cross-correlating different redshift bins, we 
remove the intrinsic-intrinsic contribution, but the lensing-
intrinsic contribution remains (i.e., resident galaxies are 
intrinsically aligned to the same potential which lenses the 
background galaxies). We will be exploring mitigation 
strategies such as template fitting (King 2006).

Finally, we compute the resulting constraints on dark energy.  In the figure below, the solid blue error ellipse 
is the forecast for the 2-point statistic alone, but without any systematics included.  The dotted ellipse is 
after allowing for uncertainty in the bias and scatter in the photometric redshifts, at the required level of 
0.0025(1+z) and 0.0035(1+z) per bin, respectively (Ma et al 2006).  The dashed line allows for an additive 
shear systematic of 10-8 in each Cl bin.

We note that the 3-point function is an independent 
measurement, which will further improve constraints.  The 2-
and 3-point functions also have different degeneracies in 
cosmological parameter space, so the joint constraints are 
significantly stronger than from the 2-point alone (Jarvis et al 
2005). 


