The Large Synoptic Survey Telescope (LSST) Image Simulation group is leading the effort to build a high-fidelity framework to simulate the LSST system and to provide users a tool to generate LSST images from astrophysical sources. This end-to-end simulation is essential for understanding systematic uncertainties and achieving precise measurements planned for the telescope. First, the input astrophysical object catalogs that include stars based on a galaxy model, asteroids, and cosmically-based galaxy catalogs with morphological parameters are synthesized. A novel photon Monte Carlo approach is then used to simulate images. We draw photons from the objects using their spectral energy distributions and propagate those photons through the Universe, atmosphere, telescope, and camera. We describe the catalog and image simulation framework and discuss new improvements to the physics model deployed for the system.

Catalog Simulations

the Universe is parameterized in catalogs

Milky Way Model

The model of the Galaxy is based on the model by Juric et al. (2008). It includes thin disk, thick disk and halo components. In addition to the stellar distribution model, the simulated stars are embedded in a Galactic dust model from Amores and Lepine (2005) normalized to the Schlegel, Finkbeiner and Davis (1998) dust maps. The plot to the right shows the density of stars as a function of equatorial coordinate. The obscuring dust in the plane of the Galaxy is clearly visible as a dark blue band.

Galaxy Model

The galaxies are distributed based on the Millennium simulation using light cone software from the N-Body shop at the University of Washington. Physical properties were derived from semi-analytic models of De Lucia et al. (2006). Galaxies have disk, bulge, and AGN components each with an extinction model and SED. The figure above shows the density of particles in the Millennium simulation. We use a four degree radius light cone to populate the base catalogs.

Solar System

The solar system model is based on the model presented in Grav et al. (2010). Since the astrometric precision must be good to 10 mas, great care is taken to enable precise calculation of ephemerides quickly. 100 million individual orbits are realized on one day intervals resulting in > 1 billion database entries for 1 year.

The figures to the right show the different solar system groups that make up the model. The black dots are the locations of the planets.

Variable Sources

LSST will catalog more periodic, transient, and moving sources than any single survey has done to date. Thus it is particularly important to be able to simulate the variable sky to high fidelity. We include periodic sources through single band light curves. Where known, we can include full spectro-temporal variability.

For example, see the average type ia supernova variability surface to the right (SALT Guy (2005)). Capabilities for simulating stochastic variability including stellar flares and AGN variability are in place.

A 3-color composite image simulation (g,r,i) of stars and galaxies covering a single chip of LSST’s focal plane. Every photon has been raytraced through the full physical model. The image covers about 13 by 13 arcminutes. LSST will produce 180 images of this size, a total of 3 gigapixels, in every 15 seconds.

Phenom Simulations

a high fidelity photon Monte Carlo turns the catalogs into images

We use a photon Monte Carlo approach to choose photons from the catalog of objects using their spatial properties and SEDs. We then propagate these photons through the atmosphere, telescope, and into the silicon of the CCD where they are converted into photoelectrons. The images are then built one photon at a time. The images to the left shows the paths of the photons on several different scales. The colors represent the actual colors of the photons.

High Fidelity Physics

We have a variety of physical models that alter the photon’s trajectory or destroy photons as they are being raytraced. The most important effects are the turbulence in the atmosphere, the misalignments and perturbations of the optics, and the charge diffusion in the CCD. The PSF images to the left shows simulations of a single star on-axis (top) and off-axis (bottom) with more physical effects being added to the simulation. The colors combine separate band simulations to demonstrate the wavelength-dependence of these effects.

New Perturbation Physics Framework

We are building a new model of perturbations by predicting the physical stresses (e.g. thermal, vibrational, pressure, and gravitational), fabrication and assembly errors, and the control system feedback on the various optical elements. A deviation from the ideal design will be predicted for each degree of freedom to build a more physical model of the perturbations and misalignments in a real telescope. We develop this model to test the scientific performance and study the predicted wavefront images.

LSST, a public-private partnership, is supported by funds provided by the Foundation. Additional funding comes from private gifts, grants to universities, and the federal support from the National Science Foundation and other LSST Institutional Members.